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Resumo
Esta tese consiste de 3 capítulos. O primeiro capítulo lida com a introdução da teoria
principal aplicada nos capítulos subsequentes.

O Capítulo 1 introduz conceitos básicos na teoria de superfícies elípticas, como
sua definição, a correspondência com curvas elípticas sobre corpos de funções e a
classificação de fibras singulares. Além disso, resultados específicos para superfícies
elípticas racionais ou K3s são apresentados.

No Capítulo 2, estudamos o posto de uma curva elíptica E , definida sobre o corpo
de funções k(T ), que é dada por uma equação de Weierstrass com coeficientes de
grau no máximo 2. Isto é feito estudando a fibração em cônicas e a fibração elíptica
induzidas em seu modelo de Kodaira–Néron R.

No Capítulo 3, estudamos superfícies K3 X com um automorfismo não-simplético
σ ∈ Aut(X) de ordem prima. Classificamos fibrações elípticas distintas de X com
respeito à ação de σ em suas respectivas fibras. Cada tipo de fibração elíptica é
relacionado a um sistema linear na resolução mínima do quociente R̃ = X/σ. Quando
a ação de σ no grupo de Néron–Severi de X fixa a classe da fibra de uma fibração
elíptica π, este método determina quais tipos de Kodaira são admissíveis como suas
fibras redutíveis. Além disso, conseguios determinar equações para sua fibra genêrica.

Palavras-chaves: Superfícies elípticas, Superfícies K3.





Abstract
This thesis consists of 3 chapters. The first chapter deals with introducing the main
theory used in the subsequent chapters.

Chapter 1 introduces basic concepts in the theory of elliptic surfaces, such as its
main definition, the correspondence with elliptic curves over function fields and the
classification of distinct fiber types. Furthermore, specific results on rational and K3
elliptic surfaces are presented.

In Chapter 2, we study the rank of an elliptic curve E , defined over the function
field k(T ), which is given by a Weierstrass equation with coefficients of degree at
most 2. This is done by studying the induced conic and elliptic fibrations on its
Kodaira–Néron model R.

In Chapter 3, we study K3 surfaces X with a non-symplectic automorphism σ ∈
Aut(X) of prime order. We classify distinct elliptic fibrations on X with respect to
the action of σ on its respective fibers. Each type of elliptic fibrations is related to a
linear system on the minimal resolution of the quocient R̃ = X/σ. When the action
of σ on the Néron–Severi group of X fixes the fiber class of an elliptic fibration π, this
method allows us to determine which Kodaira types are admissible as its reducible
fibers. Furthermore, we are able to determine equations for its generic fiber.

Key-words: Elliptic surfaces, K3 surfaces.





Samenvatting
Dit proefschrift bestaat uit drie hoofdstukken. Het eerste hoofdstuk introduceert de
belangrijkste theorieën die in de daaropvolgende hoofdstukken worden gebruikt.

Hoofdstuk 1 behendelt basisbegrippen uit de theorie van elliptische oppervlakken,
zoals de hoofddefinitie, het verband met elliptische krommen over functielichamen en
de classificatie van verschillende vezeltypes. Daarnaast worden specifieke resultaten
over rationale en K3-elliptische oppervlakken gepresenteerd.

In Hoofdstuk 2 bestuderen we de rang van een elliptische kromme E , gedefinieerd over
het functielichaam k(T ), die wordt gegeven door een Weierstrass-vergelijking met
coëfficiënten van graad hoogstens 2. Dit doen we door de geïnduceerde vezelingen in
kegelsneden en in elliptische krommen op het bij E behorende Kodaira–Néron-model
R te bestuderen.

In Hoofdstuk 3 bestuderen we K3-oppervlakken X met een niet-symplectisch au-
tomorfisme σ ∈ Aut(X) van priem orde. We classificeren verschillende elliptische
vezelingen op X met betrekking tot de werking van σ op de respectieve vezels. Elk
type elliptische vezeling is gerelateerd aan een lineair systeem op de minimale resolutie
van het quotiënt R̃ = X/σ. Wanneer de werking van σ op de Néron–Severi-groep van
X de vezelklasse van een elliptische vezeling π fixeert, stelt deze methode ons in staat
te bepalen welke Kodaira-types kunnen voorkomen als reducibele vezels. Bovendien
kunnen we vergelijkingen bepalen voor de generieke vezel van zo’n elliptische vezeling.

Sleutelwoorden: Elliptische oppervlakken, K3 oppervlakken.
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Notation

Let k be a perfect field with char(k) = 0, and S a projective surface over k.
We use the following notation.

k is a fixed algebraic closure of k.

S := S ×k k is the geometric model of S.

NS(S) is the Néron–Severi group of S.

ρ(S) := rank(NS(S)) is the Picard number of S.

χ(S) is the Euler characteristic of S (see (BARTH et al., 2015, Chapter I.4)).

e(S) is the Euler number (or the topological Euler–Poincaré characteristic) of
S (see (SCHüTT; SHIODA, 2019, Section 4.7)).

KS is the canonical divisor of S.

π : S → C is an elliptic fibration with base C.

Fv := π−1(v) is the elliptic fiber over the point v ∈ C.

(O) is the zero-section of π.

E is the generic fiber of π defined over k(C).

E(k(C)) is the group of k(C)-points of E with rank rk,

E(k(C)) = MW(π) is the group of k(C)-points of E with rank r, which we call
the Mordell–Weil group of π.

φ : S → C is a conic bundle with base C.

Gv := φ−1(v) is the conic fiber over the point v ∈ C.

Let L be a lattice and N ⊆ L a sublattice.

N⊥L is the orthogonal complement of N inside L.

Lroot is the root type of L, that is, the lattice generated by its roots (see
(SCHüTT; SHIODA, 2019)[Definition 2.16]).
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Introduction

In the study of algebraic geometry, the dimension of a variety is one of
its most important invariants. The most well understood varieties are those of
dimension 1, i.e. algebraic curves. The natural next step is that of dimension 2,
namely, algebraic surfaces. In comparison with curves, there are already many more
open ended questions in the theory of surfaces. Fibrations appear as one way to apply
the knowledge of curves to surfaces. For a projective surface S defined over a field
k, a fibration on S is a surjective map π : S → C, where C is a smooth projective
curve over k. For each point t ∈ C, the preimage Ft := π−1(t) is called a fiber of
π. The fibers of π form an infinite family of curves with strict properties on their
intersection pattern (e.g. two fibers Ft1 and Ft2 do not intersect). Furthermore, if η
is the generic point of the curve C, then the generic fiber Fη is a curve over k(C)
whose arithmetic and geometric properties are directly related to those of S.

In this work, we restrict our focus to rational and K3 surfaces. Rational
surfaces, that is, surfaces which are geometrically birational to the projective plane,
belong to the simplest class on the Kodaira classification, and were among the first
to be investigated. On the other hand, K3 surfaces are more complicated, but are
also endowed with rich geometric properties. Specifically, we study surfaces in these
classes which posses more than one distinct fibration. In our first work, we study
rational surfaces with an elliptic fibration and a conic bundle, i.e. fibrations in elliptic
curves and conics, respectively. In our second work, we study K3 surfaces with
multiple elliptic fibrations.

This thesis consists of three chapters. In the first chapter, we introduce the
necessary background for what follows. We define the object in which we are mainly
interested, that is, elliptic surfaces. We present some of the main results in the
theory of elliptic surfaces, such as the classification of reducible fibers in a relatively
minimal elliptic fibration and the Shioda–Tate formula. We define rational elliptic
surfaces and present their construction as the resolution of a cubic pencil on P2 over
an algebraically closed field. We also introduce K3 surfaces, and recall some of the
results on their non-symplectic automorphisms and elliptic fibrations.

The second chapter deals with elliptic curves over a rational function field
k(T ) over a number field k. In particular, we deal with curves E given by

y2 = a3(T )x3 + a2(T )x2 + a1(T )x+ a0(t), (1)
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where ai ∈ k[T ] and deg ai ≤ 2 for all ai. Furthermore, we assume that

∆ell(T ) = a2
3(−27a2

0a
2
3 + 18a0a1a2a3 + a2

1a
2
2 − 4a0a

3
2 − 4a3

1a3)

is not identically equal to 0, and ai(T ) are not all multiple of the same square
(T − c)2.

In (NAGAO, 1997), Nagao conjectured a formula for the rank of an elliptic
curve over Q(T ). Nagao’s formula consists on the limit of a weighted average of
the Frobenius traces for distinct fibers Et, i.e. elliptic curves over Q obtained by
the specialization map T 7→ t for each t ∈ Q. In (ROSEN; SILVERMAN, 1998),
Rosen and Silverman were able to prove Nagao’s conjecture for elliptic curves E such
that their Kodaira–Néron model is a rational elliptic surface. In particular, this is
true for a curve E given by Equation 1. This fact was used to calculate the rank
of several families of elliptic curves over Q(T ) (see (ARMS; LOZANO-ROBLEDO;
MILLER, 2007), (MEHRLE et al., 2017), (SADEK, 2022),(BATTISTONI; BETTIN;
DELAUNAY, 2021)).

In this work, we approach the same problem (i.e. determining the rank of
elliptic curves given by Equation 1) using different methods. We use two distinct
geometric structures associated to the curve E . Firstly, we use the aforementioned
Kodaira–Néron model, which consists of a rational surface R together with an elliptic
fibration π : R → P1. Then, we notice that Equation 1) induces another kind of
fibration on R; namely a conic bundle φ : R → P1. We use the interaction between
both geometric structures to study the rank of the elliptic curve E over k(T ).

In (ARTEBANI; GARBAGNATI; LAFACE, 2013) and (COSTA, 2024), the
reducible fibers of a conic bundle on a rational elliptic surface are classified in two
main types: fibers of type An (for n ≥ 2) and fibers of type Dn (for n ≥ 3). We
denote the number of fibers of type An on φ : R → P1 by δ and the rank of E over
k(T ) by r. We prove that δ ≥ r, and define the defect of E as Df(E) = δ − r (see
Definition 2.4.4). We define another important number related to E , which we denote
by δk, by analysing the action of Gal(k/k) on the components of the reducible fibers
of φ (see 2.4.11). We show that these two numbers are sufficient for determining
bounds for the rank rk of E(k(T )), as stated in the following.

Theorem 2.4.16. Let rk be the rank of E(k(T )). Then, δk ≥ rk ≥ δk − Df(E).

We show that we can determine Df(E) using only two facts: the type of the
fiber of φ : R → P1 at infinity, which we call G∞, and the Kodaira types of each fiber
of π : R → P1 which has a component in common with G∞ (see 2.5.1. In particular,
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we use this to prove that for a general curve E given by Equation 1, Df(E) = 0,
allowing us to conclude the following.

Theorem 2.5.2. Let E be a curve given by Equation 1, and γ(T ) := ∆ell(T )/a3(T )2.
Assume that deg(a3) ≥ 1, deg(γ) = 8 and that the resultant Res(a3, γ) is nonzero.
Then, rk = δk.

The third chapter deals with elliptic fibrations on K3 surfaces. One remarkable
property of K3 surfaces is that they may admit several distinct elliptic fibrations.
It is thus natural to classify the elliptic fibrations on a K3 surface. There are
different ways of defining an equivalence between two fibrations, each leading to a
different classification (details on different classifications are discussed in (BRAUN;
KIMURA; WATARI, 2013)). In (OGUISO, 1989), Oguiso studied surfaces X which
are Kummer surfaces of the product of two non-isogenous elliptic curves, and was
able to use their geometric properties to obtain a full classification of their elliptic
fibrations modulo the action from Aut(X). Another approach was done by Nishiyama
in (NISHIYAMA, 1996), in which he used lattice theoretic techniques developed
by Kneser to determine every possible ADE-type (see Definition 1.1.10) and the
Mordell–Weil rank associated to an elliptic fibration on a K3 surface X with known
Néron–Severi and Transcendental lattices.

Building on the works following Oguiso in (OGUISO, 1989) (see (KLOOSTER-
MAN, 2005) and (COMPARIN; GARBAGNATI, 2014)), Garbagnati and Salgado
developed a classification method for K3 surfaces X with an involution ι which is
non-symplectic, i.e. ι acts non-trivially in H2,0(X) (see (GARBAGNATI; SALGADO,
2019), (GARBAGNATI; SALGADO, 2020), (GARBAGNATI; SALGADO, 2024)).
When the fixed locus of ι is nonempty, the quotient X/ι is a rational surface and
there is a correspondence between elliptic fibration on X and linear system on X/ι.
Their method consists on separating each elliptic fibration on X in three distinct
types depending on the action of ι on their fibers, and deducing geometric properties
of the linear systems of X/ι corresponding with elliptic fibrations of each type.

In this work, we generalize this classification to an automorphism σ with
prime order p ≥ 3. We classify each elliptic fibration π : X → P1 on a K3 surface
X with a non-symplectic automorphism σ ∈ Aut(X) with prime order as follows.
We say that π is of type 1 with respect to σ if σ preserves every fiber Fv, that is,
if σ(Fv) = Fv for every v ∈ P1. We say that π is of type 2 if σ acts nontrivially
on the set of fibers of π, that is, if for every fiber Fv there exists w ∈ P1 such that
σ(Fv) = Fw, and for at least one v ∈ P1 σ(Fv) ̸= Fv. Finally, if σ does not fix the
class F ∈ NS(X) of fibers of π, then we say that π is of type 3 with respect to σ.
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When π : X → P1 is an elliptic fibration of type 1 with respect to σ, we are
able to obtain the following constraints for the order p of σ and the Kodaira types of
the singular fibers of π.

Proposition 3.3.1. Let X be a K3 surface and σ ∈ Aut(X) a non-symplectic
automorphism of prime order p. If (X, σ) admits an elliptic fibration π : X → P1 of
type 1, then p = 2 or 3. Furthermore, if p = 3, the singular fibers of π must be of
type I∗

0 , II, IV, II
∗ or IV ∗.

For a K3 surface X with a non-symplectic automorphism σ of order 3, we
show that each elliptic fibration π : X → P1 of type 2 with respect to σ that has its
zero-section preserverd by σ induces an elliptic fibration on the surface R̃ given as
the minimal resolution of the quotient X/σ (see Proposition 3.3.9). With this, we
are able to show that π comes from the base change of a rational elliptic surface
(Proposition 3.3.10), a fact we exploit in order to characterize its reducible fibers.

Proposition 3.3.12. Let πX : X → P1 be an elliptic fibration of type 2 on (X, σ),
and assume σ preserves the zero-section. Then, σ preserves two fibers FX

a and FX
b ,

and every other fiber is in an orbit FX
v1 , F

X
v2 , F

X
v3 of σ. Furthermore, up to permuting

FX
a and FX

b we have the following.

i) FX
a is of type I0 or I∗

n for n = 0, 3, 6, 9, 12.

ii) FX
b is of type I∗

0 , III
∗ or Im for m = 0, 3, 6, 9, 12, 15, 18.

iii) FX
v1 , F

X
v2 and FX

v3 have the same type, which can be II, III, IV, IV ∗, I∗
n for

n = 0, 1 or Im for m = 0, 1, . . . , 6.

With this, we are able to describe the geometric properties of the linear
systems induced by any elliptic fibration π : X → P1 on the rational elliptic surface
R̃.

Theorem 3.3.15. The induced pencil Λ is determined by the type of π.

i) π is of type 1 if and only if Λ is a conic bundle class of R̃.

ii) π is of type 2 if and only if Λ is a splitting genus 1 pencil of R̃.

iii) π is of type 3 if and only if Λ is a non-complete linear system.

The linear system Λ is used to determine explicit equations for the generic
fiber of any elliptic fibration on X of type 1 or 2 with respect to σ (see Propositions
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3.3.16 and 3.3.17). Finally, these results are generalized for orders p > 3 under the
condition that σ acts triavially on NS(X) (see Propositions 3.6.7, 3.6.8 and 3.6.10).





Parte I

Preparação da pesquisa
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1 Background and Definitions

In this chapter, let k be a perfect field with char k = 0. For an algebraic
variety V defined over k, its geometric model is the fiber product V := V ×k k. By
the universal property of the fiber product, every map π between varieties over k
induces a compatible map between their geometric models, which we denote by π.

1.1 Elliptic Surfaces

1.1.1 Definition

Definition 1.1.1. Let S be a smooth, projective surface, and C a smooth, projective
curve, both defined over k. A surjective map π : S → C is called an elliptic fibration
if

i) all but finitely many fibers Fv := π−1(v) for v ∈ C, are smooth, genus 1 curves;

ii) π admits a section defined over k, i.e. a map s : C → S such that π ◦ s = idC .
We fix a section s0 which we call the zero-section of π;

iii) π admits at least one singular fiber.

If S is a smooth, projective surface admitting an elliptic fibration π with section
s0, then the triple (S, π, s0) is called an elliptic surface. If no fiber Fv contains a
(−1)-component, we say that the fibration π is relatively minimal.

Remark 1.1.2. In the literature, the existence of a section is not always required.
In this case, elliptic fibrations with section are called Jacobian.

Remark 1.1.3. Item (iii) in Definition 1.1.1 excludes fibrations of product type, i.e.,
the projection of E × C to the second coordinate, when E is an elliptic curve.

Remark 1.1.4. For simplicity, we include fibers of π when referring to the fibers of
π. To distinguish when a fiber is specifically of π, we say that it is defined over k.
We apply the same treatment to sections of π.

Let E be the generic fiber of an elliptic fibration π : S → C. Then, E is a
smooth curve of genus 1 over k(C). By (LANG; NéRON, 1959, Theorem 1), the
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groups E(k(C)) and E(k(C)) are finitely generated. Let rk and r denote their ranks,
respectively.

Theorem 1.1.5. There is a bijection between sections of π and k(C)-points of E.
Furthermore, if the section is defined over k, then it corresponds to a k(C)-point.

Demonstração. See (SILVERMAN, 2013, Chapter III, Proposition 3.10.(c)).

By Theorem 1.1.5, the set of sections of π : S → C inherits the group structure
of E(k(C)).

Definition 1.1.6. We refer to the group of sections of π : S → C as the Mordell–Weil
group of π, and denote it by MW(π).

Remark 1.1.7. The image of a section s : C → S is a curve isomorphic to C inside
S. We refer to the curve in S and the k(C)-points of E induced by the same section
interchangeably, distinguishing between them when necessary.

Notation 1.1.8. We denote the identity of E(k(C)) by O. For any P,Q ∈ E(k(T )),
we denote their sum as P ⊕ Q, the sum of P with itself n times by [n]P and its
respective inverse as [−n]P . Let s : C → S be a section corresponding to a point P .
Then, we denote the curve s(C) ⊂ S by (P ). We assume the zero-section of π is
equal to (O).

We have seen that for any elliptic surface, there is a corresponding elliptic
curve over a function field. In fact, this correspondence goes both ways, as stated by
the following proposition.

Theorem 1.1.9. Let C be a smooth curve, and k(C) its function field. For every el-
liptic curve E over k(C) there is a unique relatively minimal elliptic surface π : S → C

such that the generic fiber of π is isomorphic to E as an elliptic curve. This surface
is called the Kodaira–Néron model of E.

Demonstração. See (SILVERMAN, 2013, Chapter IV, Theorem 6.1).

1.1.2 Types of fibers on elliptic fibrations

Let Fv denote the fiber π−1(v) for v ∈ C. Then, Fv and the zero-section (O)
intersect at a single smooth point of Fv. Let Θ0,v be the component of Fv which
intersects (O), and let mv be the number of distinct irreducible components of Fv.
We write Fv as
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Fv = Θ0,v +
mv−1∑
i=1

µi,vΘi,v,

where Θi,v are the distinct components of Fv and µi,v their multiplicities.

Definition 1.1.10. Let Fv be a reducible fiber of π : S → C. Then, Tv is the lattice
generated by the irreducible components of Fv which do not intersect (O), that is,

Tv := ⟨Θ1,v, . . . ,Θmv-1,v⟩.

If Fv is an irreducible fiber, then Tv = 0. We define the ADE-type of the fibration π
as the lattice T given by the sum of Tv for each v ∈ C.

T :=
⊕
v∈C

Tv.

Theorem 1.1.11. Let Fv be a fiber on a relatively minimal elliptic fibration
π : S → C. Table 1 classifies every possible configuration of the components of Fv,
and shows the lattice Tv, the J-function j(Fv) and the Euler number e(Fv).

Demonstração. See (KODAIRA, 1963) and (NÉRON, 1964) for the classification
of fibers. The values of Tv, J(Fv) and e(Fv) appear on (MIRANDA, 1989, Table
IV.3.1).

Theorem 1.1.12 (Tate’s Algorithm). Let E be an elliptic curve given by a Weierstrass
equation

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6,

with ai ∈ k(C) for some smooth curve C. Using this equation, we can determine the
Kodaira type of the fiber Fv on the Kodaira–Néron model π : S → C of E for each
v ∈ C.

Demonstração. See (TATE, 1975).

The configurations of fibers in an elliptic surface is restricted by the following.

Proposition 1.1.13. Let π : S → C be an elliptic surface. Then,

e(S) =
∑
v∈C

e(Fv).

Demonstração. See (COSSEC; DOLGACHEV, 1989, Proposition 5.16).
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Type Configuration Dual graph Tv J(Fv) e(Fv)

I0 ∗ 0 ̸= ∞ 0

I1 0 ∞ 1

I2 A1 ∞ 2

In An−1 ∞ n

II 0 0 2

III A1 1 3

IV A2 0 4

I∗
0 D4 ̸= ∞ 6

I∗
n Dn+4 ∞ n+ 6

IV ∗ E6 0 8

III∗ E7 1 9

II∗ E8 0 10

Tabela 1 – Kodaira’s classification of fibers on elliptic fibrations

1.1.3 The Néron–Severi lattice

Let NS(S) be the group of divisors of S modulo algebraic equivalence, which
we call the Néron–Severi group of S (see (SHAFAREVICH, 2013, Chapter III.4.4)).
We denote the rank of NS(S) as a Z-module by ρ(S), and refer to it as the Picard
number of S. For any projective surface S over k, the Néron–Severi group NS(S) has
a bilinear pairing given by the intersection product. When S is an elliptic surface,
this pairing endows NS(S) with a lattice structure.

Proposition 1.1.14. Let π : S → C be an elliptic surface. Then, NS(S) is torsion
free, and the intersection product ( · ) is non-degenerate. Consequently, (NS(S), ( · ))
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has a lattice structure.

Demonstração. See (SHIODA, 1990, Theorem 1.2).

Definition 1.1.15. Let π : S → C be an elliptic surface over k and D ⊂ S be an
irreducible curve. We say that D is (with respect to π) vertical if π(D) = v ∈ C and
horizontal if π(D) = C. We say that D ∈ NS(S) is vertical (resp. horizontal) if D is
represented by a sum of irreducible curves which are all vertical (resp. horizontal).

Notice that the vertical divisors in NS(S) correspond to fiber components of
π : S → C.

Definition 1.1.16. We define the trivial lattice of an elliptic surface (S, π, s0) as

Triv(S) := ⟨F, (O)⟩ ⊕ T ,

where F is the fiber class of π, (O) the zero-section and T the ADE-type of π (see
Definition 1.1.10). Equivalently, Triv(S) is the sublattice of NS(S) generated by the
prime vertical divisors of S with respect to π and the zero-section.

Theorem 1.1.17. Let π : S → C be an elliptic fibration with generic fiber E defined
over k(C). Then, there is an isomorphism

NS(S)
Triv(S)

∼= E(k(C)).

Corollary 1.1.18. As a consequence of Theorem 1.1.17, the Picard number of an
elliptic surface is given as follows,

ρ(S) = 2 +
∑
v∈C

(mv − 1) + r,

where r is the rank of E(k(C)). This is known as the Shioda–Tate formula.

Let F be the fiber class of π and (O) the zero-section. Together they determine
a sublattice ⟨F, (O)⟩ ⊆ NS(S).

Definition 1.1.19. The lattice Wπ := ⟨F, (O)⟩⊥NS(S) is called the frame lattice of
(S, π, s0).

Remark 1.1.20. Notice that on Definition 1.1.19 our notation for the orthogonal
complement exhibits the ambient lattice explicitly. This is not standard, but it is
useful as in Chapter 3 we work with orthogonal complements of the same sublattice
over distinct ambient lattices (e.g. Tables 6 and 9).
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The frame lattice is related to the ADE-type of π through the following.

Proposition 1.1.21. Let π : S → C be an elliptic surface, and assume its Euler
characteristic χ(S) is greater than 1. Then the following affirmations are true.

i) The root of the frame lattice determines the ADE-type of π, that is,
(Wπ)root = T .

ii) MW(π) ∼= Wπ/T .

Demonstração. See (SCHüTT; SHIODA, 2019, Proposition 6.42) for item (i). Item
(ii) is a consequence of (i) and Theorem 1.1.17.

The following proposition shows a connection between the linear relations of
points of E(k(T )) and the vertical divisors of S with respect to π.

Proposition 1.1.22. Let P1, . . . , Pm be k(T )-points of the generic fiber E of an
elliptic surface π : S → P1, and let n1, . . . , nm ∈ Z be integers such that

[n1]P1 ⊕ · · · ⊕ [nm]Pm = O.

Then for n = n1 + · · · + nm, the divisor n1(P1) + · · · + nm(Pm) − n(O) ∈ NS(S) is
vertical.

Demonstração. See (SILVERMAN, 2013, Chapter III, Proposition 9.2).

1.1.4 Base changes of elliptic surfaces

Let π : S → C be a relatively minimal elliptic fibration. If C ′ is a smooth
curve with a surjective map τ : C ′ → C, we can construct the fiber product S ×C C

′.

S S ×C C
′

C C ′

The generic fiber of the map S ×C C
′ → C ′ is an elliptic curve, but S ×C C

′

has singularities when at least one fiber over the ramification locus of τ is singular, so
it is not necessarily an elliptic surface. After resolving singularities and contracting
(−1)-components of fibers, we obtain a surface S ′ with a relatively minimal elliptic
fibration π′ : S ′ → C ′. We call this elliptic surface the base change of π : S → C by
τ : C ′ → C.
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Take v ∈ C and v′ ∈ C ′ such that τ(v′) = v, and let r(v′|v) denote its
ramification index. Let F ′

v′ denote the fiber (π′)−1(v′) and Fv denote the fiber π−1(v).
Then, it is possible to determine the Kodaira type of F ′

v′ in terms of the Kodaira
type of Fv and r(v′|v).

Proposition 1.1.23. The Kodaira type of F ′
v′ is determined according to Table 2.

Fv r(v′|v) F ′
v′ Fv r(v′|v) F ′

v′

In m Imn I∗
n m ≡ 1 mod 2 I∗

mn

m ≡ 0 mod 2 Imn
II m ≡ 1 mod 6 II II∗ m ≡ 1 mod 6 II∗

m ≡ 2 mod 6 IV m ≡ 2 mod 6 IV ∗

m ≡ 3 mod 6 I∗
0 m ≡ 3 mod 6 I∗

0
m ≡ 4 mod 6 IV ∗ m ≡ 4 mod 6 IV
m ≡ 5 mod 6 II∗ m ≡ 5 mod 6 II
m ≡ 0 mod 6 I0 m ≡ 0 mod 6 I0

III m ≡ 1 mod 4 III III∗ m ≡ 1 mod 4 III∗

m ≡ 2 mod 4 I∗
0 m ≡ 2 mod 4 I∗

0
m ≡ 3 mod 4 III∗ m ≡ 3 mod 4 III
m ≡ 0 mod 4 I0 m ≡ 0 mod 4 I0

IV m ≡ 1 mod 3 IV IV ∗ m ≡ 1 mod 3 IV ∗

m ≡ 2 mod 3 IV ∗ m ≡ 2 mod 3 IV
m ≡ 0 mod 3 I0 m ≡ 0 mod 3 I0

Tabela 2 – Kodaira type of fibers after base change

Demonstração. See (MIRANDA, 1989, Table VI.4.1).

1.2 Rational elliptic surfaces

1.2.1 Construction of rational elliptic surfaces

Definition 1.2.1. We say that R is a rational elliptic surface if R is rational and
there is an elliptic fibration π : R → C.

As a consequence of Lüroth’s theorem, the basis C of π is always a rational
curve. For simplicity, we assume C = P1.

Proposition 1.2.2. Let F and G be two cubics in P2 without any common com-
ponents. Then, the resolution of the rational map φ : P2 99K P1 given by P 7→
[F(P ):G(P )] is a rational surface R endowed with an elliptic fibration π : R → P1.
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Over algebraically closed fields, every relatively minimal rational elliptic
surface can be obtained by such a resolution (see (MIRANDA, 1989, Lemma IV.1.2)).
In general, rational elliptic surfaces have the following properties.

Proposition 1.2.3. Let π : R → P1 be a relatively minimal rational elliptic surface
defined over k. The following hold.

i) ρ(R) = 10.

ii) e(R) = 12.

iii) KR = −F .

iv) A rational curve C ⊂ R is a section of π if and only if C2 = −1.

v) A rational curve C ⊂ R is a fiber component of π if and only if C2 = −2.

Demonstração. See (SCHüTT; SHIODA, 2019, Proposition 7.5) for items (i) and
(ii), (SCHüTT; SHIODA, 2019, Proposition 5.28) for item (iii). Items (iv) and (v)
are a consequence of the Adjunction Formula (see (BEAUVILLE, 1996, Theorem
I.15)).

Notice that (i) in Proposition 1.2.3 simplifies the Shioda–Tate formula (Corol-
lary 1.1.18) when S is a rational elliptic surface, as stated by the following corollary.

Corollary 1.2.4. Let π : R → P1 be a rational elliptic surface and r the rank of its
generic fiber E over k(T ). Then,

r = 8 −
∑
v∈P1

k

(mv − 1).

Let E be an elliptic curve over k(T ), and let π : S → P1 be its Kodaira–Néron
model. We can use a minimal Weierstrass equation for E to determine whether S is
a rational surface.

Proposition 1.2.5. Let E be given by a minimal Weierstrass equation

y2 + a1(T )xy + a3(T )y = x3 + a2(T )x2 + a4(T )x+ a6(T ),

such that ai ∈ k(T ) are not all constant. Let π : S → P1 be the Kodaira–Néron model
of E. Then, S is a rational surface if and only if deg(ai) ≤ i.

Demonstração. See (SCHüTT; SHIODA, 2019, Chapter 5.13).
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1.2.2 Conic bundles on rational elliptic surfaces

Definition 1.2.6. Let S be an algebraic surface over k. A conic bundle on S is a
surjective morphism φ : S → C to a smooth curve C such that all but finitely many
fibers are irreducible curves of genus 0.

In particular, the generic fiber of a conic bundle φ : S → C is a curve of genus
0 over k(C). As a consequence, we have the following proposition.

Proposition 1.2.7. If φ : S → C is a conic bundle, then the induced morphism
S → C has a section.

Demonstração. By a result of (TSEN, 1933), every conic over k(C) has a point,
which induces a section of φ.

We are mainly interested in conic bundles on rational elliptic surfaces. These
objects were studied in (ARTEBANI; GARBAGNATI; LAFACE, 2013) and (COSTA,
2024), for example. Let R be a rational surface and φ : R → C a conic bundle. As in
the case of elliptic fibrations over rational surfaces, we assume for simplicity that
C = P1.

Example 1.2.8. Let F and G be two smooth cubic curves in P2 such that sF + tG
doesn’t have reducible curves and F ∩G consists of 9 distinct points P1, . . . , P9. Then,
the induced rational elliptic surface π : R → P1 has no reducible fibers. Let Λ1 be the
pencil of lines in P2 through P9. Then Λ1 induces a conic bundle φ : R → P1 with
exactly 8 reducible fibers, corresponding to the the lines ℓ1, . . . , ℓ8, where ℓi is the
line through Pi and P9.

Let G be the fiber class of φ. Then, G is a nef divisor such that G2 = 0 and,
by adjunction, G · (−KR) = 2. In what follows, we see that these conditions are
sufficient for characterizing the conic bundles of R.

Definition 1.2.9. Let π : R → P1 be a rational elliptic surface. Then, G ∈ NS(R) is
called a conic class if G is nef, G2 = 0 and G · (−KR) = 2.

Proposition 1.2.10. Let π : R → P1 be a rational elliptic surface. Then, every conic
class G induces a conic bundle φ : R → P1 with G as its fiber class.

Demonstração. See (COSTA, 2024, Theorem 3.8).
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Assume that the elliptic fibration π : R → P1 is relatively minimal. Then, we
classify the fibers of φ as follows.

Theorem 1.2.11. Let R be a relatively minimal rational elliptic surface and
φ : R → P1 a conic bundle. Then, every fiber of φ fits in one of the types described
in Table 3.

Type Intersection Graph
0 ∗
A2

1 1

An (n ≥ 3)
1 1 1 1

D3
1 2 1

Dn (n ≥ 4)
1

1 2 2 2
∗ smooth, irreducible curve of genus zero

(−1)-curve (section of π)

(−2)-curve (component of a reducible fiber of π)

Tabela 3 – fibers in conic bundles over rational elliptic surfaces

Demonstração. See (COSTA, 2024, Theorem 4.2).

Example 1.2.12. Let φ : R → P1 be the conic bundle described in Example 1.2.8,
and let G1, . . . , G8 be its reducible fibers. Since the elliptic fibration π : R → P1 has
no reducible fibers, by Proposition 1.2.3 R has no rational (−2)-curves. Then, by
Theorem 1.2.11, every Gi is a fiber of type A2. The components of Gi correspond
to ℓ̃i and Ei, which are the strict transform of ℓi and the exceptional curve of the
blow-up of Pi, respectively.

1.2.3 Splitting genus 1 pencils

Let π : R → P1 be a rational elliptic surface. We are interested in pencils of
curves of genus 1 on R. One clear example of such system is the pencil of fibers
induced by π. When π is relatively minimal, this is the only base point free pencil of
genus 1 curves. On the other hand, if π is not relatively minimal, it is possible to
have multiple such pencils.

Definition 1.2.13. A splitting genus 1 pencil on a rational elliptic surface (which
may not be relatively minimal) R̃ is a proper morphism φ : R̃ → P1 such that
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i) Cs := φ−1(s) is a genus 1 curve for almost all s ∈ P1.

ii) Cs ·KR̃ = 0 for all s ∈ P1.

The pencil of curves {Cs}s∈P1 is also called a splitting genus 1 pencil.

The use of the term "splitting"comes from the fact that under specific base
changes, each splitting genus 1 pencil φ : R̃ → P1 determines an elliptic fibrations
on a K3 surface X such that every genus 1 curve Cs is split into a fixed number of
isomorphic copies (see Theorem 3.3.15).

Example 1.2.14. Let F ,G,H be cubics in P2 with no common components, and
assume that H is not in the pencil Λ1 = F + tG. We can define a pencil Λ2 = F + tH
distinct from Λ1. Let R̃ be the surface obtained by blowing up the base points of
both Λ1 and Λ2. These pencils induce two distinct elliptic fibrations π1 : R̃ → P1

and π2 : R̃ → P1 which are not relatively minimal, and the families {π−1
i (s)}s∈P1 are

splitting genus 1 pencils of R̃.

1.3 K3 surfaces
In this section, we assume that k is an algebraically closed field, that is, k = k,

and char(k) = 0. As a consequence, for every variety V we have that V = V .

1.3.1 Definition

Definition 1.3.1. A K3 surface is a smooth, projective surface X over k with trivial
canonical divisor and irregularity 0, that is, KX = 0 and q(X) = h1(X,OX) = 0.

Example 1.3.2. Let π : X → P2 be a double covering ramified over a smooth
sextic C. Then, X is a K3 surface (see (HUYBRECHTS, 2016, Chapter 1, Example
1.3.(iv))).

We can calculate the following for K3 surface.

Proposition 1.3.3. Let X be a K3 surface. Let χ(X) denote the Euler characteristic
and e(X) the Euler number (see (SCHüTT; SHIODA, 2019, Section 4.7)) of X. The
following is true.

i) χ(X) = 2.

ii) e(X) = 24.
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iii) ρ(X) ≤ 20.

Remark 1.3.4. Let k be a field with char(k) > 0. Then, item (iii) in Proposition
1.3.3 is not true for every K3 surface. Instead, there is a bound ρ(X) ≤ 22 (see
(HUYBRECHTS, 2016)[Chapter 1, Remark 3.7]), and there are known for which
ρ(X) = 22 (see (SHIODA, 1973)).

Demonstração. See (HUYBRECHTS, 2016, Chapter 1, 2.3) for item (i). Item (ii) is
a consequence of (i) and Noether’s Formula (see (BEAUVILLE, 1996, I.14)), and
Item (iii) is proved in (HUYBRECHTS, 2016, Chapter 1, 3.3).

Proposition 1.3.5. The lattice H2(X,Z) endowed with the cup product is isometric
to ΛK3 := U⊕3 ⊕ E8(−1)⊕2, which we call the K3 lattice.

Demonstração. See (HUYBRECHTS, 2016, Chapter 1, Proposition 3.5).

The intersection product of X endows NS(X) with a lattice structure (see
(HUYBRECHTS, 2016, Chapter 1, Proposition 2.4)), which can be isometrically em-
bedded in H2(X,Z) via the first Chern map. We consider its orthogonal complement
in the following definition.

Definition 1.3.6. The transcendental lattice of X is defined as

TX := NS(X)⊥H2(X,Z).

1.3.2 Automorphisms of K3 surfaces

Let X be a K3 surface and σ ∈ Aut(X) an automorphism of X. Since
KX = 0, we have h0(X,KX) = h0(X,OX) = 1, and we can choose a generator ωX of
H0(X,KX). Then, σ induces an action on H0(X,KX) with the map ωX 7→ σ∗(ωX).

Definition 1.3.7. We say that an automorphism σ is symplectic if σ∗(ωX) = ωX

and non-symplectic otherwise, that is, if σ∗(ωX) = αωX for some α ∈ k.

Theorem 1.3.8. Let X be a K3 surface and σ a non-symplectic automorphism
of finite order m. Then, σ∗(ωX) = ζmωX , where 1 ̸= ζm is an mth root of unity.
Furthermore, φ(m) ≤ 21, and consequently m ≤ 66.

Demonstração. See (NIKULIN, 1980, Theorem 0.1).

Let X be a K3 surface endowed with a non-symplectic automorphism σ of
prime order p. By Theorem 1.3.8, p is at most equal to 19. Denote the fixed locus of
σ by Fix(σ).
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Theorem 1.3.9. Let X be a K3 surface and σ ∈ Aut(X) a non-symplectic auto-
morphism of prime order p. If p = 2, then Fix(σ) is either empty, the disjoint union
of two elliptic curves or the disjoint union of m smooth curves C ⊔ L1 ⊔ . . . ⊔ Lm-1,
where C is a curve of genus g ≥ 0 and Li are rational curves. If p ≥ 3, then

Fix(σ) = C ⊔ L1 ⊔ . . . ⊔ Lm−1 ⊔ {P1, ..., Pn},

where C is a smooth curve of genus g ≥ 0, Li are smooth rational curves and Pi

isolated fixed points.

Demonstração. See (ARTEBANI; SARTI; TAKI, 2011, Lemma 2.2).

Proposition 1.3.10. Let x ∈ X be a point fixed by a non-symplectic automorphism
σ of order p. Then there are local coordinates (z1, z2) around x such that the action
of σ is given by one of the following linear maps

Ap,t =
ζt+1

p 0
0 ζp−t

p

 , t = 0, 1, ..., p− 2,

where ζp is a primitive root of unity of order p. If the local action is given by Ap,0,
then x is a point in a fixed curve. Otherwise, x is an isolated fixed point.

Demonstração. The fact that an automorphism can be seen to act linearly around a
fixed point is a classical result by Cartan (see (CARTAN, 1954-1954, Lemma 1)).
The application to non-symplectic automorphisms stems from work of Nikulin (see
(NIKULIN, 1980, Section 5)).

Remark 1.3.11. For a non-symplectic involution, the only possible action around a
fixed point is (z1, z2) 7→ (−z1, z2), which indicates that the fixed point is part of a
fixed curve. In other words, there are no isolated fixed points.

Theorem 1.3.12. Let X be a K3 surface and σ ∈ AutX of finite order n > 1. Let
Y be the resolution of the quotient X/σ.

i) If σ is symplectic, then X/σ is a K3 surface.

ii) If σ is non-symplectic with n = 2 and Fix(σ) = ∅, then Y is an Enriques
surface.

iii) If σ is non-symplectic and either n > 2 or Fix(σ) ̸= ∅, then Y is rational.

Demonstração. See (KONDō, 2018, Lemma 4.1) for item (i), (ZHANG, 1999, Lemma
1.2), and (XIAO, 1995, Lemma 2) for items (ii) and (iii).
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1.3.3 Elliptic fibrations on K3 surfaces

Let X be a K3 surface and π : X → C a relatively minimal elliptic fibration.
As in the case of rational elliptic surfaces, we assume C = P1. Let F be the fiber class
of π and (O) the zero-section. The lattice ⟨F, F + (O)⟩ determines an embedding of
the hyperbolic lattice U into NS(X). On the other hand, the following holds.

Proposition 1.3.13. Let X be a K3 surface and ψ : U ↪→ NS(X) an embedding of
lattices. Then, there is a relatively minimal elliptic fibration π : X → P1 such that its
frame lattice Wπ is isometric to ψ(U)⊥NS(X).

Demonstração. See (KONDō, 1992, Lemma 2.1).

Since U is unimodular, we can write NS(X) = U ⊕Wπ. Consequently, Wπ is
an even lattice with signature (0, ρ(X) − 2) and its discriminant lattice is isomorphic
to that of NS(X).

Proposition 1.3.14. Let π : S → P1 be an elliptic fibration. Then, S is a K3 surface
if and only if e(S) = 24.

Demonstração. If S is a K3 surface, then e(S) = 24 by Theorem 1.3.3. Assume
e(S) = 24. Since S is elliptic, we can write its canonical divisor as

KS = (χ(S) − 2)F, (1.1)

where F is the fiber class of π and χ(S) the Euler characteristic of S. In particular
K2
S = 0. Thus, by Noether’s Formula (see (BEAUVILLE, 1996, I.14)), we have

χ(S) = e(S) +K2
S

12 = 2.

Consequently, by Equation 1.1 we have KS = 0. By Serre Duality ((BEAUVILLE,
1996, Theorem I.11)), h2(S,OS) = h0(S,KS) = h0(S,OS) = 1. Thus, by the definition
of the Euler characteristic, we have

q(S) = h1(S,OS) = h0(S,OS) + h2(S,OS) − χ(S) = 0.

This proves that S is a K3 surface.
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2 Conic bundles and Mordell–Weil ranks
of elliptic surfaces

2.1 Introduction

This chapter is based on the paper (MEIRA, 2025). This paper is accessible
through arXiv and is currently under review for publication.

Let k be a number field, and E a curve over the function field k(T ) given by
an equation of the form

y2 = a3(T )x3 + a2(T )x2 + a1(T )x+ a0(t), (2.1)

where ai(T ) are polynomials in k[T ] of degree at most 2. We further assume that

∆ell(T ) = a2
3(−27a2

0a
2
3 + 18a0a1a2a3 + a2

1a
2
2 − 4a0a

3
2 − 4a3

1a3)

is not identically equal to 0, and ai(T ) are not all multiple of the same square (T − c)2.
With these conditions, E defines an elliptic curve over k(T ). Curves in this form
have been studied in (ARMS; LOZANO-ROBLEDO; MILLER, 2007), (KOLLAR;
MELLA, 2017), (BATTISTONI; BETTIN; DELAUNAY, 2021).

In this chapter, we study the Mordell–Weil rank of rk of E(k(T )) through the
geometry determined by Equation 2.1. By Theorem 1.1.9, E has a Kodaira–Néron
model π : R → P1. By applying the changes of coordinates x 7→ x

a3(T ) and y 7→ y
a3(T ) ,

we can use Proposition 1.2.5 to deduce that R is rational. Furthermore, we can
rewrite Equation 2.1 as

y2 = A(x)T 2 +B(x)T + C(x). (2.2)

The projection to the x-coordinate in Equation 2.2 determines a conic bundle
φ : R → P1. Each root θ of ∆conic(x) := B(x)2 − 4A(x)C(x) induces a k(T )-point
Pθ ∈ E(k(T )). Namely,

Pθ :=


(
θ,
√
A(θ)

(
T + B(θ)

2A(θ)

))
when A(θ) ̸= 0,(

θ,
√
C(θ)

)
when A(θ) = 0.

(2.3)
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Each of these points corresponds to a (−1)-component in a reducible fiber of
φ (see Theorem 1.2.11). As an application of Nagao’s conjecture ((NAGAO, 1997)),
which was proven by Rosen and Silverman for rational elliptic surfaces ((ROSEN;
SILVERMAN, 1998)), we obtain families of curves E in which the number of k(T )-
points induced by roots of ∆conic(x) is equal to the rank rk exactly (see (ARMS;
LOZANO-ROBLEDO; MILLER, 2007, Theorem 2.1)). This is not true in general –
indeed, there are cases where rk is strictly smaller than the number of roots of ∆conic

(see (SHIODA, 1991, Theorem A2)).

2.1.1 Chapter structure

Section 2.2 surveys Nagao’s conjecture and its applications to determine the
Mordell–Weil rank of elliptic curves as in Equation (2.1).

Section 2.3 deals with a general rational surface R with a relatively minimal
elliptic fibration π : R → P1 and a conic bundle φ : R → P1. In 2.3.1, we adapt results
from standard conic bundles to obtain a description of the Néron–Severi group NS(R)
and the canonical divisor KR. In 2.3.2, we compare the number δ of fibers of type
An in φ and the rank r of the generic fiber of π.

In Section 2.4 we apply the results of the previous section to surfaces R given
by Equation (2.1) and Equation (2.2). In 2.4.1, we determine the types of the singular
fibers of the conic bundle φ from Equation (2.2). In 2.4.2, we define the defect of
E , and prove that the points Pθ induced by the conic bundle φ generate a finite
index subgroup of E(k(T )). In 2.4.3 we define the number δk in terms of the action
of Gal(k/k) on the fibers of φ and prove our main result, δk − Df(E) ≤ rk ≤ δk.

Section 2.5 deals with using the bounds for rk to determine the rank rk of
families of curves given by Equation (2.1). In 2.5.1, we determine Df(E) from the
fiber configuration of π and φ. In 2.5.2, we explore cases in which Df(E) = 0, and
provide families for which rk = δk. In 2.5.3 we explore cases with Df(E) > 0, and
provide families with Df(E) = 1 for which we can determine if rk = δk or rk = δk − 1
depending on the coefficients of E in Equation (2.2).

2.2 Nagao’s Conjecture and Applications

In this section, we state Nagao’s conjecture and give a brief exposition on
subsequent theorems and applications. We follow the original exposition of the
conjecture in (NAGAO, 1997), so we work over Q.
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Let E be an elliptic curve over Q(T ), given by an equation in Weierstrass
form

E : y2 + a1(T )xy + a3(T )y = x3 + a2(T )x+ a4(T )x+ a6(T ),

with coefficients ai(T ) ∈ Z[T ]. For all but finitely many t ∈ Q, the specialization map
T 7→ t yields an elliptic curve Et over Q. For each prime p ∈ Z>0 of good reduction,
we consider at(p) the trace of the Frobenius at p on Et, given by p+ 1 −Nt(p), where
Nt(p) is the number of Fp points of Et (we say that at(p) = 0 if p | ∆(t)). Further,
consider the average over fibers

AE(p) := 1
p

p−1∑
t=0

at(p).

In 1997, based on several explicit calculations for the Mordell–Weil rank
of E(Q(T )) on nontrivial families, Nagao conjectured a limit formula relating
rank E(Q(T )) to the values of AE(p) (see (NAGAO, 1997, Question (2))).

Conjecture 2.2.1. Let E, AE(p) be as defined above, then

lim
X→∞

1
X

∑
p≤X

−AE(p) log p = rank E(Q(T )).

In the following year, Rosen and Silverman published a proof that Tate’s
conjecture implies Nagao’s conjecture, settling it in particular for rational elliptic
surfaces (see (ROSEN; SILVERMAN, 1998, Theorem 1.3)).

Theorem 2.2.2 (Rosen, Silverman). Nagao’s conjecture holds for rational elliptic
surfaces.

In (ARMS; LOZANO-ROBLEDO; MILLER, 2007), Arms, Lozano-Robledo
and Miller apply Rosen and Silverman’s result to elliptic curves over Q(T ) given by
an equation of the form

y2 = x3T 2 + 2g(x)T − h(x), where (2.4)

g(x) = x3 + ax2 + bx+ c, c ̸= 0;

h(x) = (A− 1)x3 +Bx2 + Cx+D.

Applying the coordinate change x 7→ x
T 2+2T−A+1 to Equation 2.4, we check

that it indeed corresponds to a rational elliptic surface (see (SCHüTT; SHIODA,
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2019, Chapter 5.13)). The theory of quadratic Legendre sums is used to prove the
following.

Theorem 2.2.3. For infinitely many integers a, b, c, A,B,C,D, the polynomial
DT (x) = g(x)2+x3h(x) has 6 distinct, nonzero roots which are perfect squares, and the
curve E given by Equation 2.4 is an elliptic curve over Q(T ) with rank E(Q(T )) = 6.

Demonstração. See (ARMS; LOZANO-ROBLEDO; MILLER, 2007, Theorem 2.1
and Remark 2.2).

This was later generalized to any number field in (MEHRLE et al., 2017,
Theorem 1.1). In (SADEK, 2022, Theorem 5.3), this result is expanded to curves
over Q(T ) given by Equation 2.1 such that deg a3(T ) = 2.

A similar strategy was employed by Battistoni, Bettin and Delaunay in
(BATTISTONI; BETTIN; DELAUNAY, 2021) to obtain rank formulas for elliptic
curves over Q(T ) of the form

y2 = A(x)T 2 +B(x)T + C(x), (2.5)

where degA(x), degB(x) ≤ 2, at least one of A(x), B(x) is not identically zero, and
C(x) is monic and of degree 3. They obtain four distinct formulas for rank E(Q(T )),
depending on if A(x) = 0, A(x) = µ ∈ Q×, deg(A) = 1 or deg(A) = 2 (see
(BATTISTONI; BETTIN; DELAUNAY, 2021, Theorem 1)).

When A(x) = 0, the formula is simplified as follows.

Theorem 2.2.4 (Battistoni, Bettin, Delaunay). Let E be an elliptic curve over Q(T )
given by an equation of the form 2.5, and assume A(x) = 0. Then,

rank E(Q(T )) = #{[θ] : B(θ) = 0, C(θ) ∈ Q(θ)2 \ {0}},

where [θ] denotes the orbit of θ by the action of the Galois group Gal(Q/Q).

Demonstração. See (BATTISTONI; BETTIN; DELAUNAY, 2021, Theorem 2).

When A(x) = µ ∈ Q×, the formula is also simplified.

Theorem 2.2.5 (Battistoni, Bettin, Delaunay). Let E be an elliptic curve over Q(T )
given by an equation of the form 2.5, and assume A(x) = µ ∈ Q×. Then,

rank E(Q(T )) =

#{[θ] : B2(θ) − 4µC(θ) = 0} − 1 if µ ∈ Q2,

#{[θ] : B2(θ) − 4µC(θ) = 0, µ ∈ Q(θ)2 \ {0}} if µ ∈ Q \ Q2.
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Demonstração. See (BATTISTONI; BETTIN; DELAUNAY, 2021, Theorem 1, Sec-
tion 3.1).

When deg(A) = 1 or 2, the formula provides the following upper bound for
the rank.

Theorem 2.2.6 (Battistoni, Bettin, Delaunay). Let E be an elliptic curve over Q(T )
given by an equation of the form 2.5. Then,

rank E(Q(T )) ≤ #{[θ] : B2(θ) − 4A(θ)C(θ) = 0}.

Demonstração. See (BATTISTONI; BETTIN; DELAUNAY, 2021, Proposition 14).

2.3 Conic bundles on rational elliptic surfaces
In this section, let R be a rational elliptic surface with a relatively minimal

elliptic fibration π : R → P1, and φ : R → P1 a conic bundle.

2.3.1 Generalities on conic bundles

We start by establishing notation for the reducible fibers of the conic bundle
φ : R → P1. By Theorem 1.2.11, every reducible fiber of φ is of type An, with n ≥ 2,
or Dn, with n ≥ 3. Let δ(φ) be the number of fibers of type An, and ε(φ) the number
of fibers of type Dn. Notice that these numbers depend on the conic bundle φ; a
rational elliptic surface may be endowed with two different conic bundles φ1 and φ2

such that δ(φ1) ̸= δ(φ2). Through the rest of this section, we fix one conic bundle φ
and refer to δ(φ), ε(φ) as δ, ε, respectively. Next, we establish further notation for
the fibers of φ.

Notation 2.3.1. A fiber φ−1(v) is denoted by Gv, its number of components by nv
and its class in NS(R) by G.

Denote the fibers of type An by Gv1 , . . . , Gvδ
. We write

Gvi
=

nvi -1∑
j=0

αvi,j. (2.6)

The components in Equation 2.6 intersect following the graph of fibers of
type An in Table 3, with α2

vi,0 = α2
vi,nvi -1 = −1 and α2

vi,j
= −2 for j = 1, . . . , nvi

− 2.
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Denote the fibers of type Dn by Gw1 , . . . , Gwε . We write

Gwi
= βwi,0 + βwi,1 + 2

nwi -1∑
j=2

βwi,j. (2.7)

Similarly, the components in Equation 2.7 intersect following the graph of
fibers of type Dn in Table 3, with β2

wi,nwi -1 = −1 and β2
wi,j

= −2 for j = 0, . . . , nwi
−2.

Let Gv be a reducible fiber of φ. Then e(Gv) = nv + 1 independently of the
type of Gv, since the fiber is composed of nv rational curves intersecting in nv − 1
distinct points. We can use this fact to limit the possible configurations of fibers.

Proposition 2.3.2. For φ : R → P1 a conic bundle over a rational elliptic surface,
we have the following formula.

∑
v∈P1

(nv − 1) = 8.

Demonstração. By (COSSEC; DOLGACHEV, 1989, Proposition 5.1.6), the Euler
number of R is given by

e(R) = e(Gη)e(P1) +
∑
v∈P1

(e(Gv) − e(Gη)),

where Gη is the generic fiber of φ. By Proposition 1.2.3, e(R) = 12. Substituting
e(Gη) = e(P1) = 2 and e(Gv) = nv + 1, we obtain the result.

In what follows, we deal with the concept of standard conic bundles, which is
defined as follows.

Definition 2.3.3. Let φ : S → P1 be a conic bundle. We say that it is standard if
every reducible fiber of φ is given by two concurrent rational (−1)-curves.

Notice that, if φ : R → P1 is a conic bundle and R is a rational elliptic surface
with a relatively minimal elliptic fibration π : R → P1, then φ is standard if and only
if every reducible fiber is of type A2 with respect to the classification in Theorem
1.2.11.

When a rational surface R has a standard conic bundle, we can describe the
generators of the Néron–Severi group NS(R), and exhibit the canonical divisor KR

explicitly in terms of said generators.
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Theorem 2.3.4. Let S be a rational surface such that K2
S = d, and let φ : S → P1

be a standard conic bundle. The following hold.

i) There are r′ = 8 − d reducible fibers of φ, all of which are composed of two
concurrent exceptional curves.

ii) There is a free basis of NS(S) given by ⟨G,H, ℓ1, ..., ℓr′⟩, where G is the fiber
class of φ, H is a section of φ and ℓ1, ..., ℓr′ are the components of the reducible
fibers of φ not intersecting H.

iii) The canonical divisor of S is given by

KS = −2H + (H2 − 2)G+∑r′

i=1 ℓi.

Demonstração. See (KUNYAVSKII; TSFASMAN, 1985, Proposition 0.4).

The rest of this section is devoted to generalizing Theorem 2.3.4 to any conic
bundle over a (relatively minimal) rational elliptic surface.

Assumption 2.3.5. Fix a section H ⊂ R of the conic bundle φ : R → P1. Then,
H · Gv = 1, so H intersects a single simple component of Gv. For the fibers Gwi

of type Dn, H can only intersect βwi,0 or βwi,1, and we can assume without loss of
generality that it intersects βwi,0. On the other hand, for the fibers Gvi

of type An,
H can intersect any component. Let ki be the number such that H intersects αvi,ki

.
We can assume without loss of generality that 0 ≤ ki ≤ nvi

− 2.

Proposition 2.3.6. Let R be a rational elliptic surface and φ : R → P1 a conic
bundle on R with a fixed section H ⊂ R. Then, there is a contraction η : R → R0

such that

i) H does not intersect any of the curves contracted by η;

ii) there is a standard conic bundle φ0 : R0 → P1 such that φ = φ0 ◦ η.

In other words, η(H) is a section of φ0 : R0 → P1.

Demonstração. Let E be a (−1)-component of a fiber of φ. Then, the pushforward
of the fiber class G by the blow-down of E induces a conic bundle commuting with
the blow-down map.
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Let Gvi
be a fiber of type An such that nvi

≥ 3. If we blow-down one of
the (−1)-components of Gvi

, the (−2)-component intersecting it becomes a (−1)-
component on the contracted surface. Thus, we can repeat this process successively.
We need to contract nvi

− 2 components that do not intersect the section H. Since
we assume that H intersects αvi,ki

, we can do this by blowing-down a chain of ki
components starting with αvi,0 and a chain of nvi

− ki − 2 components starting with
αvi,nvi -1. This iterative process yields a fiber of type A2 (see Figure 1).

αvi,0 αvi,ki
αvi,nvi −1

ki components nvi −ki−2 components

contraction

Figura 1 – Blowing-down a fiber of type An to a fiber of type A2

Let Gv be a fiber of type Dn, with n ≥ 3. Since we assume H intersects the
component βwi,0, we can similarly blow-down a chain of nwi

− 2 components starting
with βwi,nwi -1, reaching a fiber of type A2 (see Figure 2).

βwi,nwi −1

nwi −2 components

contraction

βwi,0

βwi,1

Figura 2 – Blowing-down a fiber of type Dn to a fiber of type A2

Applying these blow-downs to all reducible fibers of φ, we reach a conic
bundle φ0 : R0 → P1 in which all reducible fibers are of type A2. Therefore, φ0 is a
standard conic bundle.

Proposition 2.3.7. Let φ : R → P1 be a conic bundle over a relatively minimal
rational elliptic surface and H a section of φ. The following hold.

i) There is a free basis of NS(R) given by

B = ⟨G,αv1,1, ... , αv1,nv1 -1, ... , αvδ,1, ... , αvδ,nvδ
-1,

H, βw1,1, ... , βw1,nw1 -1, ... , βwε,1, ..., βwε,nwε -1⟩.

ii) The canonical divisor of R is given by

KR = − 2H +
( δ∑
i=1

ki +H2−2
)
G+

δ∑
i=1

(nvi -1∑
j=1

(|ki−j| − ki)αvi,j

)
+

ε∑
i=1

(nwi -1∑
j=1

jβwi,j

)
.
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Demonstração. Let η : R → R0 be the contraction to a standard conic bundle in
Proposition 2.3.6. For each reducible fiber with n components, n− 2 components are
contracted. Thus there are ∑δ

i=1(nvi
−2) +∑ε

i=1(nwi
−2) individual contractions. We

can decompose η as

η = ηv1,nv1 -2 ◦ · · · ◦ ηv1,1 ◦ · · · ◦ ηvδ,1 ◦ ηw1,nε-2 ◦ · · · ◦ ηwε,1,

where ηvi,j (respectively ηwi,j) is the j-th contraction of a component of Gvi

(respectively Gwi
). These maps correspond to blow-ups with the contracted

component as the exceptional divisor. Theorem 2.3.4 gives us a free basis of NS(R0)
and the canonical divisor KR0 . In what follows, we apply basic properties of blow-ups
(see (BEAUVILLE, 1996, Proposition II.3)) to each of the maps ηvi,j and ηwi,j.

i) The image of H by η is a section of the conic bundle φ0 : R0 → P1. Indeed,
by Proposition 2.3.6, the contracted divisors do not intersect H. To simplify notation,
we also refer to this section as H. For each fiber Gvi

, all of its components are
contracted by η, except for αvi,ki

and αvi,ki+1. Similarly, for each fiber Gwi
, all

components are contracted except for βwi,0 and βwi,1. We also refer to the image of
these components in R0 by the same notation, and to the fiber class of φ0 by G.
Since H intersects the components αvi,ki

and βwi,0, we know by Theorem 2.3.4 that
NS(R0) is generated by the free basis

⟨G,H, αv1,ki+1, ... , αvδ,kδ+1, βw1,1, ... , βwε,1⟩.

By (BEAUVILLE, 1996, Proposition II.3.(iii)), NS(R) is generated by by the
pullback of the basis of NS(R0) and the exceptional divisors of the blow-ups ηvi,j, ηwi,j .
When ki = 0 for all i = 1, . . . , δ, this is equal to B and we are done. Otherwise,
we write αvi,0 in terms of the basis B as G−αvi,1−. . .−αvi,nvi -1, so B generates NS(R).

ii) By Theorem 2.3.4, the canonical divisor of R0 is given by

KR0 = −2H + (H2 − 2)G+
δ∑
i=1

αvi,ki+1 +
ε∑
i=1

βwi,1.

We obtain KR by applying (BEAUVILLE, 1996, Proposition II.3.(iv)) succes-
sively for each individual blow-up ηvi,j, ηwi,j. Firstly, notice that since the section H

and a general fiber G do not intersect any of the exceptional divisors, their pullbacks
by any ηvi,j, ηwi,j are given by only their strict transforms. Therefore, we focus on
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calculating the pullbacks on αvi,ki+1 and βwi,1, as well as the exceptional divisors
introduced by each blow-up. We can do this fiber by fiber.

We start with a fiber φ−1
0 (wi). The map, ηwi,1 is centered at a point of βwi,1,

and its exceptional divisor corresponds to βwi,2. Thus, we calculate

η∗
wi,1(βwi,1) + βwi,2 = βwi,1 + 2βwi,2.

Subsequently, the j-th blow-up ηwi,j is centered at the component βwi,j. Applying
this for all j up to nwi

− 2, we conclude the part of KR supported in Gwi
is equal to

nwi -1∑
j=1

jβwi,j.

For a fiber φ−1
0 (vi), the blow-up ηvi,1 is centered at αvi,ki+1 with exceptional

divisor corresponding to αvi,ki+2. We calculate

η∗
vi,1(αvi,ki+1) + αvi,ki+2 = αvi,ki+1 + 2αvi,ki+2.

Subsequently, for j = 1, . . . , ni−ki−2, the blow-up ηvi,j is centered at αvi,ki+j . Taking
their pullbacks successively, we obtain

ni-ki-1∑
j=1

jαvi,ki+j.

The blow-up ηvi,ni-ki-1 is centered at αvi,ki
, which is not a component in the canonical

divisor. Therefore we only add the exceptional curve αvi,ki−1. For j = 0, . . . , ki − 1,
the blow-up ηvi,nvi -ki-1+j is centered at αvi,ki−j, and we conclude that the part of KR

supported in Gvi
is equal to

ki∑
j=1

jαvi,ki-j +
ni-ki-1∑
j=1

jαvi,ki+j =
nvi -1∑
j=0

|ki−j|αvi,j.

In order to write KR in terms of the basis B, we substitute

kiαvi,0 = ki(G− αvi,1 − . . .− αvi,nvi -1)

Thus, we obtain the result.

2.3.2 Mordell–Weil ranks of rational elliptic surfaces via conic bundles

Let π : R → P1 be a rational elliptic surface over and φ : R → P1 a conic
bundle over k. In this section, we relate the rank r of E(k(T )) to the number δ of
fibers of type An of φ. Firstly, by Corollary 1.2.4 and Proposition 2.3.2, we know
that both r and δ are at most 8. The following proposition shows another way in
which these numbers are related.
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Proposition 2.3.8. If r = 8, then δ = 8.

Demonstração. If r = 8, then by Corollary 1.2.4 π has no reducible fibers. Consequen-
tly, we can use Proposition 1.2.3 to conclude that there are no rational (−2)-curves in
X. By Theorem 1.2.11, every reducible fiber of φ is of type A2, so using Proposition
2.3.2 we obtain δ = 8.

In what follows, we prove that δ ≥ r. We start with a useful definition.

Definition 2.3.9. Let Fv be a fiber of π : R → P1. Then, we define

ℓv := #{Θ irreducible component of Fv| Θ is a fiber component of φ}.

Before the main result, we prove the following Lemmata.

Lemma 2.3.10. Let Fv be a fiber of π : R → P1, and let mv be its number of
irreducible components. Then, ℓv ≤ mv − 1.

Demonstração. By Definition 2.3.9, its clear that ℓv ≤ mv. Suppose that for a fiber
Fv we have ℓv = mv. Then, since every component of Fv is a fiber component of φ,
we have Fv ·G = 0. This is not possible, since by adjunction G · (−KR) = 2 and by
Proposition 1.2.3, −KR = F , where F is the fiber class of π.

Lemma 2.3.11. We can write the sum of ℓv over every v ∈ P1 as follows:

∑
v∈P1

ℓv =
δ∑
i=1

(nvi
− 2) +

ε∑
i=1

(nwi
− 1)

Demonstração. By Proposition 1.2.3, every (−2)-curve in R is a fiber component of
π. Therefore,∑

v∈P1

ℓv = #{Θ irreducible component of a fiber of φ| Θ2 = −2}.

We obtain the result by the classification in Theorem 1.2.11 (see Table 3).

Lemma 2.3.12. We can write the difference δ − r as follows:

δ − r =
∑
v∈P1

(mv − 1 − ℓv).

Demonstração. By algebraic manipulation we can write

∑
v∈P1

(nv − 1) = δ +
δ∑
i=1

(nvi
− 2) +

ε∑
i=1

(nwi
− 1).
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Then, Lemma 2.3.11 yields
∑
v∈P1

(nv − 1) = δ +
∑
v∈P1

ℓv.

By Proposition 2.3.2 and Corollary 1.2.4, we have

δ +
∑
v∈P1

ℓv = 8 = r +
∑
v∈P1

(mv − 1).

Rearranging, we obtain the result.

With this, we are ready to prove the following.

Proposition 2.3.13. Let R be a rational surface with an elliptic fibration π of
Mordell–Weil rank r over k. Let φ : R → P1 be a conic bundle with δ fibers of type
An. Then, δ ≥ r.

Demonstração. Applying Lemma 2.3.10, we have
∑
v∈P1

ℓv ≤
∑
v∈P1

(mv − 1).

Thus, Lemma 2.3.12 yields

δ − r =
∑
v∈P1

(mv − 1 − ℓv) ≥ 0.

Remark 2.3.14. Notice that Proposition 2.3.8 is a special case of Proposition 2.3.13.

2.4 Conic bundles via Weierstrass Equations
In this section, we study the elliptic curves E over k(T ) defined by Equation

2.1, with a conic bundle structure induced by Equation 2.2 (see Section 2.1).

y2 = a3(T )x3 + a2(T )x2 + a1(T )x+ a0(t), (2.1)

y2 = A(x)T 2 +B(x)T + C(x). (2.2)

Let R be the Kodaira–Néron model of E , π : R → P1 the elliptic fibration and
φ : R → P1 the conic bundle determined by Equation 2.2. Denote the number of fibers
of φ of type An by δ and of type Dn by ε. We follow Notation 2.3.1 for the components
of the reducible fibers of φ. Recall that each root θ of ∆conic(x) = B(x)2 − 4A(x)C(x)
determines a pair of points Pθ,−Pθ ∈ E(k(T )) (see Equation 2.3).
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2.4.1 The fiber types of a conic bundle on a rational elliptic surface

Let φ : R → P1 be the conic bundle determined by Equation 2.2. In what
follows, we determine the singular fibers of φ and their respective types, as classified
in Theorem 1.2.11.

Proposition 2.4.1. Let ∆conic(x) = B(x)2 − 4A(x)C(x), and for every θ ∈ k,
let Gθ := φ−1([θ:1]). Then, Gθ is singular if and only if ∆conic(θ) = 0. Moreover,
assuming v(x−θ)(∆conic) = n− 1, the following hold.

1. If A(θ) ̸= 0 or C(θ) ̸= 0, then Gθ is of type An.

2. If A(θ) = C(θ) = 0, then Gθ is of type Dn.

Demonstração. Firstly, assume A(θ) ̸= 0. Then, applying the change of coordinates
T = T ′ − B(x)

2A(x) , we obtain the following equation.

y2 = A(x)(T ′)2 − ∆conic(x)
4A(x) .

Testing by partial derivatives, the point y = T ′ = 0 is singular in the
special fiber at (x − θ) if and only if ∆conic(θ) = 0. If v(x−θ)(∆conic(x)) = 1, then
y = T ′ = x − θ = 0 is regular in X (see (LIU, 2006, Corollary 4.2.12)), and Gθ

is of type A2, composed of the two lines y =
√
A(θ)T ′ and y = −

√
A(θ)T ′. If

v(x−θ)(∆conic(x)) = n− 1 for n ≥ 3, then the point y = T ′ = x− θ = 0 is a singularity
of type An−2 (see (REID, , Table 1)). Then, Gθ is of type An, with two components
coming from the lines y =

√
A(θ)T ′ and y = −

√
A(θ)T ′ and n − 2 components in

the resolution of the singularity at y = T ′ = x− θ = 0.

Assuming A(θ) = 0 and C(θ) ̸= 0, we can apply the change of coordinates
T = 1/u, y = y′/u, arriving at the equation

(y′)2 = C(x)u2 +B(x)u+ A(x).

Thus, the type of Gθ follows by the previous method.

Finally, assume A(θ) = C(θ) = 0. Then, ∆conic(x) = B(x)2. If B(θ) ̸= 0,
then the special fiber at (x − θ) is smooth. Otherwise, the special fiber is a non
reduced curve given by y2 = 0. By the classification in Theorem 1.2.11, we know
that Gθ is a fiber of type Dn for some n ≥ 3. By the resolution of the special fiber,
n = v(x−θ)(∆conic) + 1.
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Notice that Proposition 2.4.1 does not determine the type for the fiber at
infinity. In order do this, we perform the change of coordinates x 7→ 1/s, y = y′/s2,
obtaining the following equation.

y′2 = Ã(s)T 2 + B̃(s)T + C̃(s), (2.8)

where Ã(s) = s4A(1/s), B̃(s) = s4B(1/s), C̃(s) = s4C(1/s). Define ∆̃(s) :=
s8 ∆conic(1/s). Since A, B and C have degree at most 3, we know Ã(0) = B̃(0) =
C̃(0) = 0. An immediate application of Proposition 2.4.1 to Equation (2.8) yields
the following.

Proposition 2.4.2. Assume vs(∆̃) = 8 − deg(∆conic) = n − 1. Then, the fiber at
infinity of φ : R → P1 is of type Dn.

A consequence of Proposition 2.4.2 is that not every conic bundle on a rational
elliptic surface can be described by Equations 2.1 and 2.2: see Example 1.2.8 and
1.2.12.

Remark 2.4.3. Notice that we can recover Proposition 2.3.2 by counting the number
of components of each reducible fiber in Propositions 2.4.1 and 2.4.2.

2.4.2 The defect of R and the rank of E over k

Let E be an elliptic curve over k(T ) defined by Equation 2.1, π : R → P1 its
Kodaira–Néron model and φ : R → P1 the conic bundle defined by Equation 2.2. In
what follows, we investigate when the rank r of E over k(T ) is equal to the number
δ of fibers of type An of φ. We use the following definition.

Definition 2.4.4. The defect of E is defined as the number

Df(E) := δ − r.

By Proposition 2.3.13, Df(E) ≥ 0 for any E defined by Equation 2.1. Since the
rank r can be determined through a combination of Tate’s Algorithm (see Theorem
1.1.12) and the Shioda–Tate formula (see Corollary 1.1.18), and δ can be determined
by Proposition 2.4.1, we can always calculate the defect of E .

Example 2.4.5. Let R be the rational elliptic surface and φ : R → P1 the conic
bundle given by the following equation.

y2 = (x2 − 1)T + x3 − x+ 4.
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By Tate’s algorithm, the elliptic fibration has a single reducible fiber of type I∗
2 , thus

by the Shioda–Tate formula, r = 2. Applying Proposition 2.4.1, φ has two fibers of
type A3. Then, δ = 2 and Df(E) = 0.

In what follows, we apply the theory of Section 2.3 to π : R → P1 and
φ : R → P1. Let Gw1 , . . . , Gwε be the fibers of type Dn for some n ≥ 3. Since by
Proposition 2.4.2 the fiber at infinity is of type Dn, we assume without loss of
generality that it is Gw1 . Let (O) be the zero-section of π : R → P1. By Equation 2.1,
(O) is contained in Gw1 . Since (O)2 = −1, we conclude that (O) = βw1,nw1 -1.

Proposition 2.4.6. Let G be the class of a fiber of φ : R → P1. Then, G ∈ Triv(X).

Demonstração. The fiber class G is represented by Gw1 , and we write

Gw1 = βw1,0 + βw1,1 + 2βw1,2 + · · · + 2βw1,nw1 −2 + 2(O).

Since βw1,j is a (−2)-curve for j = 0, 1, . . . , nw1 − 2, they are all fiber components of
π. Therefore, Gw1 ∈ Triv(R).

By Proposition 1.2.3, the (−1)-components of singular fibers of φ are sections
of π, so they correspond to k(T )-points of E . We use the following notation according
to the type of fiber of φ. For Gvi

a fiber of type Anvi
, we write αvi,nvi −1 = (Pi) and

αvi,0 = (P ′
i ). For Gwi

a fiber of type Dnwi
, we write βwi,nwi −1 = (Qi).

Corollary 2.4.7. In E(k(T )), P ′
i = −Pi for every i = 1, . . . , δ, and [2]Qi = O for

every i = 1, . . . , ε.

Demonstração. We can write Gvi
≡ (Pi) + (P ′

i ) mod Triv(R), since αvi,j is a (−2)-
curve for j = 1, . . . , ni − 2. Therefore, by Proposition 2.4.6, (Pi) + (P ′

i ) ∈ Triv(R).
Under the isomorphism in Theorem 1.1.17, we deduce Pi ⊕ P ′

i = O. Doing the same
for Gwi

, we have 2(Qi) ∈ Triv(R), so [2]Qi = O.

Notice that Corollary 2.4.7 is only true when the conic bundle φ : R → P1 is
induced by Equation 2.2. This agrees with the explicit expression for k(T )-points
induced by roots of ∆conic(x). Indeed, if Gvi

is a fiber of type An, then by Proposition
2.4.1, it is equal to Gθ for some θ ∈ k such that A(θ) or C(θ) are non-zero. By
Equation 2.3, the points Pθ and −Pθ are on the line x = θ, so they correspond
to the (−1)-components of Gvi

. We can assume without loss of generality that Pi
corresponds to Pθ. Similarly, if Gwi

is a fiber of type Dn, then it is induced by a root
θ of ∆conic such that A(θ) = C(θ) = 0, so by Equation 2.3, Pθ is a point of 2-torsion
in E(k(T )) corresponding to Qi.
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Definition 2.4.8. Let S ⊂ E(k(T )) be the set {P1, . . . , Pδ}, M the subgroup of
E(k(T )) generated by S and L the free Z-module generated over S.

There is a natural surjection ψ : L → M and we have an exact sequence

0 → kerψ → L
ψ−→ M → 0. (2.9)

The elements of kerψ are equivalent to linear relations between P1, . . . , Pδ in
E(k(T )).

Theorem 2.4.9. The rank of kerψ as a Z-module is equal to Df(E).

Demonstração. Let z = rank(kerψ). By the exact sequence (2.9), we know z =
δ−rankM . Since M is a submodule of E(k(T )), rankM ≤ r. Therefore, by Definition
2.4.4,

z ≥ δ − r = Df(E). (2.10)

There are z independent linear relations

[a1,1]P1 ⊕ · · · ⊕ [a1,δ]Pδ = O,
...

[az,1]P1 ⊕ · · · ⊕ [az,δ]Pδ = O.

Let ai = ∑δ
j=1 ai,j. By Proposition 1.1.22, each linear relation corresponds to

an independent vertical divisor ai,1(P1) + . . .+ ai,δ(Pδ) − ai(O). We use these divisors
to write a set of independent divisors of Triv(R):

F, (O),

αv1,1, . . . , αv1,nv1 -2, . . . , αvδ,1, . . . , αvδ,nvδ
-2,

βw1,0, . . . , βw1,nw1 -2, . . . , βwε,0, . . . , βwε,nwε -2,

a1,1(P1) + · · · + a1,δ(Pδ) − a1(O),
...

az,1(P1) + · · · + az,δ(Pδ) − az(O).

We can check that the divisors above are linearly independent by writing them in
terms of the basis B in Proposition 2.3.7. By Proposition 1.2.3, F = −KF , and
we write KF in basis B in Proposition 2.3.7. The components αvi,j and βwi,j are
generators of B for j ≥ 1, and we can write

βwi,0 = G− βwi,1 − 2βwi,2 − · · · − 2βwi,nwi -1.
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Finally, we use the correspondences (O) = βw1,nw1 -1 and (Pi) = αvi,nvi -1 for the rest
of the divisors. Therefore, we have a total of 2 +∑δ

i=1(nvi
− 2) +∑ε

i=1(nwi
− 1) + z

independent divisors in Triv(R). Thus, we have

2 +
δ∑
i=1

(nvi
− 2) +

ε∑
i=1

(nwi
− 1) + z ≤ rank(Triv(R)) = 2 +

∑
v∈P1

(mv − 1).

By Lemmas 2.3.11 and 2.3.12, we conclude

z ≤ Df(E). (2.11)

By the inequalities (2.10) and (2.11), we conclude that z = Df(E).

A direct consequence of the previous theorem is the following.

Corollary 2.4.10. The points P1, . . . , Pδ determined by the conic bundle φ : R → P1

generate a finite index subgroup of E(k(T )).

2.4.3 Bounds on the rank of E over k

So far, we have worked over the algebraic closure k of the field k over which
π : R → P1 and φ : R → P1 are defined. In Section 2.4.2, we have studied the relation
between r and δ. In order to study the rank rk of E(k(T )), we define a number δk
which will play a similar part.

Definition 2.4.11. Let E be a curve given by Equation 2.2. We define δk as

δk = #
{

[θ] : ∆conic(θ) = 0,
A(θ) is a nonzero square in k(θ) or
A(θ) = 0 and C(θ) is a nonzero square in k(θ)

}
,

where [θ] denotes the orbit of θ by the action of Gal(k/k).

Remark 2.4.12. Notice that by Definition 2.4.11, we can rewrite the result of
Theorems 2.2.4 and 2.2.5 as follows. If E is a curve given by an equation of the form
2.5 and deg(A) = 0, then

rQ =

δQ − 1 if A(x) = µ ∈ Q2 \ {0},

δQ otherwise.

We know Gal(k/k) acts on NS(R) preserving the intersection product. In
particular, any automorphism σ ∈ Gal(k/k) sends a (−1)-component of a fiber of
type An to another (−1)-component of a fiber of type An. Thus, for any Pi ∈ S,
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we have σ(Pi) = ±Pj. For each Pi ∈ S, let [Pi] be the orbit of Pi by the action of
Gal(k/k). The point ∑P∈[Pi] P is invariant under Gal(k/k), so it is a k(T )-point of
E .

Definition 2.4.13. Let [θi] be an orbit in the set

#
{

[θ] : ∆conic(θ) = 0,
A(θ) is a nonzero square in k(θ) or
A(θ) = 0 and C(θ) is a nonzero square in k(θ)

}
.

Choose an element θ′
i ∈ [θi], and let

Σi =
∑

P∈[Pθ′
i
]
P

We define the set Sk := {Σ1, . . . ,Σδk
}. Further, we define Mk as the subgroup of

E(k(T )) generated by Sk, and Lk as the free Z-module over Sk.

Remark 2.4.14. On Definition 2.4.13, different choices of θ′
i ∈ [θi] may lead to

different results for Σi. Specifically, let θ′
i, θ

′′
i ∈ [θi] and assume that σ(Pθ′

i
) = −Pθ′′

i

for some σ ∈ Gal(k/k). Then, ∑P∈[Pθ′
i
] P = −∑

P∈[Pθ′′
i

] P . Notice that any linear
combination [n1]Σ1 ⊕ . . .⊕ [nδk

]Σδk
induces an equivalent linear combination for any

other choice of θ′
i ∈ [θi], switching the sign of ni if necessary.

Before our main theorem, we prove the following lemma on the subgroup Mk

of E(k(T )).

Lemma 2.4.15. Let MG be the subgroup of M (see Definition 2.4.8) invariant by
Gal(k/k). Then, MG = Mk.

Demonstração. By definition, Mk is a subgroup of M invariant by Galois action, so
Mk ⊂ MG. Let [n1]P1 ⊕ . . . ⊕ [nδ]Pδ ∈ MG. For each i = 1, . . . , δ, the point Pi is
equal to Pθ (see 2.3) for some θ ∈ k such that ∆conic(θ) = 0, and one of A(θ) and
C(θ) is nonzero. Assume A(θ) ̸= 0 is not a square in k(θ). Then,

Pi =
(
θ,
√
A(θ)

(
T + B(θ)

2A(θ)

))
,

and the automorphism
√
A(θ) 7→ −

√
A(θ) takes Pi to −Pi. Similarly, if A(θ) = 0 and

C(θ) is not a square in k(θ),
√
C(θ) 7→ −

√
C(θ) takes Pi to −Pi. Since we assume

[n1]P1 ⊕ . . .⊕ [nδ]Pδ is invariant under the action of Gal(k/k), we conclude ni = 0.

Now, assume A(θ) is a nonzero square in k(θ) or A(θ) = 0 and C(θ) is a
nonzero square in k(θ). Then, for each P ∈ [Pi] distinct from Pi, we know P = ±Pj
for some j ̸= i. If Pj ∈ [Pi], then ni = nj, and if −Pj ∈ [Pi], then ni = −nj. In
both cases, either (∑P∈[Pi] P ) ∈ Sk or −(∑P∈[Pi] P ) ∈ Sk (see Remark 2.4.14). Thus,
[n1]P1 ⊕ . . .⊕ [nδ]Pδ ∈ Mk, and we conclude Mk = MG.
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There is a natural surjection ψk : Lk → Mk, and we have an exact sequence

0 → kerψk → Lk
ψk−→ Mk → 0. (2.12)

We use this exact sequence to prove our main result.

Theorem 2.4.16. Let rk be the rank of E(k(T )). Then, δk ≥ rk ≥ δk − Df(E).

Demonstração. By the exact sequence 2.12, we have δk = rankMk + rank(kerψk).
Since by Lemma 2.4.15 Mk is a finite index subgroup of E(k(T )), we know rank(Mk) =
rk. On the other hand, each linear relation between points of Sk is a linear relation
between points of S, so by Theorem 2.4.9, we have rank(kerψk) ≤ Df(E). This proves
the result.

Remark 2.4.17. Notice Theorem 2.4.16 is a generalization of Theorem 2.2.6 to the
context of any number field k, and allowing a3(T ) ̸= 1 in Equation 2.1.

2.5 Computations of the rank
Let E be a curve given by Equation 2.1, π : R → P1 its Kodaira–Néron model

and φ : R → P1 the conic bundle induced by Equation 2.2. In general, Theorem
2.4.16 shows that calculating δk determines a range of possible values for rk, but not
rk itself. In this section, we explore cases in which we can determine rk explicitly.
Specifically, we recover Theorems 2.2.4 and 2.2.5 in the more general context of
number fields.

2.5.1 Computation of Df(E)

Let G∞ be the fiber at infinity of the conic bundle φ : R → P1. By Proposition
2.4.2, G∞ is of type Dn, for n ≥ 3. If n = 3, then there are 2 distinct reducible
fibers of π with components in common with G∞ (see (COSTA, 2024, Theorem 5.2)).
If n ≥ 4, only one reducible fiber has a component in common with G∞. In what
follows, we prove that the type of G∞ and the Kodaira types of the fibers of π with
components in common with G∞ are sufficient for determining the defect Df(E).

Theorem 2.5.1. Let E be a curve given by Equation 2.1, π : R → P1 its Kodaira–
Néron model and φ : R → P1 the induced conic bundle. Let G∞ be the fiber at infinity
of φ of type Dn.

i) If n = 3, then Df(E) is equal to the number of fibers of type IV or Im, m ≥ 3,
which have an irreducible component in common with G∞.
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ii) If n ≥ 4, then Df(E) ≤ 1. Let Fa be the fiber of π with components in common
with G∞. In particular, Df(E) = 1 in three cases:

1. if G∞ is of type D4 and Fa of type Im for m ≥ 5;

2. if G∞ is of type D5 and Fa of type I∗
1 ;

3. if G∞ is of type D6 and Fa of type IV ∗.

For all other configurations of G∞ and Fa, Df(E) = 0.

Demonstração. For each fiber Fv of π, recall that we define ℓv as the number of
components of Fv which are also components of a fiber of φ (see Definition 2.3.9).
Then, by Proposition 2.3.12 and Definition 2.4.4,

Df(E) =
∑
v∈P1

(mv − 1 − ℓv). (2.13)

Let Fv be a fiber of π which has no components in common with G∞. If Fv
is not reducible, then mv = 1 and ℓv = 0. Assume Fv is reducible and let Θv,0 be
its component intersecting the zero-section (O). We can calculate Θ0,v ·G∞ = 2, so
Θv,0 is a 2-section of φ. On the other hand, the remaining mv − 1 components of
Fv do not intersect G∞, so they are fiber components of φ. Thus, ℓv = mv − 1 and
mv − 1 − ℓv = 0. Therefore, in order to determine Df(E), we just need to determine
ℓv for the fibers Fv which have a component in common with G∞.

i) Let n = 3 and Fa, Fb be the fibers of π which have components in common
with G∞. Let Θa,0,Θb,0 be the components of Fa, Fb intersecting (O), respectively.
We can write G∞ = Θa,0 + Θb,0 + 2(O).

If Fa is of type IV or Im, m ≥ 3, then Θa,0 intersects Θa,1 and Θa,ma-1 . Since
these components intersect G∞, they are sections of φ. On the other hand, the
remaining ma − 3 components Θa,2, . . . ,Θa,ma-2 do not intersect G∞, so they must be
components of a fiber of φ. Thus, ℓa = ma−2. If Fa is of one of the remaining Kodaira
types, then Θa,0 only intersects Θa,1. The other components Θa,2, . . . ,Θa,ma-1 do not
intersect G∞, so they are fiber components in φ. Thus, ℓa = ma − 1. We determine
ℓb by the same arguments. Substituting every ℓv in Equation 2.13, we obtain the result.

ii) Let n ≥ 4 and Fa be the fiber of π which has a component in common
with G∞. For each n, the Kodaira type of Fa is restricted by the intersection pattern
on the (−2)-components of G∞. We prove the result through the following steps for
every possible combination of types of G∞ and Fa.
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1. Determine which components of Fa are also components of G∞.

2. From the remaining components of Fa, we determine which ones intersect G∞.
These are section (or multi-sections) of φ.

3. The remaining components do not intersect G∞. Therefore, they are fiber
components of φ.

With this, we determine ℓa, so we can calculate Df(E) = ma − 1 − ℓa. We do not
show these steps explicitly, only the final results in Table 4. The first two columns
show the types of G∞ and Fa. The third column shows the components of Fa which
are also fiber components of φ, and the fourth column shows the components which
are sections or multi-sections of φ, following the notation in (SCHüTT; SHIODA,
2019, Theorem 5.12). Finally, the fifth column shows the value of Df(E) for each
combination.

G∞ Fa fiber components of φ (multi)-sections of φ Df(E)
D4 I4 Θ0,Θ1,Θ3 Θ2 0
D4 Im≥5 Θ0,Θ1,Θ3, . . . ,Θm-3,Θm-1 Θ2,Θm-2 1
D5 I∗

1 Θ0,Θ1,Θ4,Θ5 Θ2,Θ3 1
D5 I∗

m≥2 Θ0, . . . ,Θ5,Θ7, . . . ,Θm+4 Θ6 0
D6 IV ∗ Θ0,Θ2,Θ3,Θ4,Θ6 Θ1,Θ5 1
D7 III∗ Θ0, . . . ,Θ4,Θ6,Θ7 Θ5 0
D9 II∗ Θ0,Θ2, . . . ,Θ8 Θ1 0
Dm+5 I∗

m≥0 Θ0,Θ2, . . . ,Θm+4 Θ1 0

Tabela 4 – Df(E) for each configuration of G∞ and Fa

In particular, Theorem 2.5.1 shows that Df(E) ≤ 2 for every curve E given
by Equation 2.1.

2.5.2 Families of curves with Df(E) = 0

If E is a curve given by Equation 2.1, then by Theorem 2.4.16, we know
δk ≥ rk ≥ δk − Df(E). In general, this is not enough to determine rk explicitly. The
obvious exceptions are the examples in which Df(E) = 0. In this section, we use
Theorem 2.5.1 to find the families of curves for which every member has Df(E) = 0,
and thus rk = δk.

We start by looking at the family of curves given by Equation 2.1 in which
a3(T ) is non-constant.
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Theorem 2.5.2. Let E be a curve given by Equation 2.1, and γ(T ) := ∆ell(T )/a3(T )2.
Assume that deg(a3) ≥ 1, deg(γ) = 8 and that the resultant Res(a3, γ) is nonzero.
Then, rk = δk.

Demonstração. Firstly, we put Equation 2.1 in Weierstrass form by applying the
coordinate changes x 7→ x/a3(T ) and y 7→ y/a3(T ). After clearing the denominator,
we have

y2 = x3 + a2(T )x2 + a1(T )a3(T )x+ a0(T )a3(T )2.

The discriminant of E is given by

∆ell(T ) = −27a2
0a

4
3 + 18a0a1a2a

3
3 + a2

1a
2
2a

2
3 − 4a0a

3
2a

2
3 − 4a3

1a
3
3

= a2
3(−27a2

0a
2
3 + 18a0a1a2a3 + a2

1a
2
2 − 4a0a

3
2 − 4a3

1a3)

= a2
3(T )γ(T ).

Let G∞ be the fiber at infinity of the conic bundle φ : R → P1. Recall that by
Proposition 2.4.2, G∞ is of type Dn where n = 9 − deg(∆conic).

Assume a3(T ) = p(T − q), where p ∈ k× and q ∈ k. Then, writing E in the
form of Equation 2.2, we have deg(A) ≤ 2, deg(B) = 3. Thus, deg(∆conic) = 6 and
G∞ is of type D3. There are two distinct fibers of π : R → P1 which have components
in common with G∞, namely, the fiber Fq at T = q and the fiber at infinity F∞. We
can use Tate’s Algorithm to determine the fiber types of Fq, F∞. Since Res(a3, γ) ̸= 0,
q is not a root of γ(T ), so Fq is of type I2. Similarly, since deg(γ) = 8, F∞ is of type
I2. By Theorem 2.5.1, Df(E) = 0.

Assume a3(T ) = p(T−q1)(T−q2), where p ∈ k× and qi ∈ k. Calculating ∆conic,
we obtain the lead coefficient in x equals p2(q1 − q2)2. If q1 ≠ q2, then deg(∆conic) = 6
and G∞ is of type D3. The fibers Fq1 and Fq2 have components in common with G∞,
and by Tate’s Algorithm both are of type I2. If q1 = q2, then deg(∆conic) ≤ 5 and
G∞ is of type Dn for some n ≥ 4. By Tate’s Algorithm, the fiber Fq1 is of type I4.
By Table 4, G∞ is of type D4. In both cases, by Theorem 2.5.1, Df(E) = 0, so by
Theorem 2.4.16 rk = δk.

Notice that the conditions imposed in Theorem 2.5.2 on the coefficients ai(T )
exclude only a Zariski closed set. In this sense, this theorem implies that in the
family of curves given by Equation 2.1, a general member E has rk = δk.

Example 2.5.3. Let E be given by

y2 = Tx3 + (T 2 + aT + b)x2 + (cT 2 + dT + e)x+ (fT 2 + gT + h) (2.14)

= (x2 + cx+ f)T 2 + (x3 + ax2 + dx+ g)T + (bx2 + ex+ h),
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for a, b, c, d, e, f, g, h ∈ k. The condition Res(a3, γ) ̸= 0 is equivalent to
γ(0) = b2(e2 − 4bh) ̸= 0. The condition deg(γ) = 8 is equivalent to the coefficient of
γ in T 8 being nonzero, that is, c2 − 4f ̸= 0. Under these assumptions, rk = δk.

In what follows, we apply Theorem 2.5.1 to recover previous results stated in
Section 2.2.

Proposition 2.5.4. Let E be a curve given by the following equation, for
A,B,C,D, a, b, c ∈ k

E : y2 = x3T 2 + 2g(x)T − h(x), where (2.15)

g(x) = x3 + ax2 + bx+ c, c ̸= 0;

h(x) = (A− 1)x3 +Bx2 + Cx+D.

Assume ∆conic(x) has 6 distinct nonzero roots which are perfect squares over k. Then,
rk = 6.

Demonstração. Firstly, notice that writing E in the form of Equation 2.2, we have
A(x) = x3. Since by assumption every root of ∆conic is a perfect square, we have that
δk = 6. By Proposition 2.4.2, the fiber G∞ has type D3, and by Tate’s Algorithm,
the Kodaira–Néron model π : R → P1 has two reducible fibers of type I2. Therefore,
Theorem 2.5.1 tells us that Df(E) = 0. Applying Theorem 2.4.16, we obtain the
result.

This result recovers the calculation of the rank in Theorem 2.2.3. We turn
next to curves in which a3(T ) is constant in Equation 2.1 and A(x) = 0 in Equation
2.2.

Proposition 2.5.5. Let E be a curve given by

E : y2 = B(x)T + C(x), (2.16)

where deg(B) ≤ 2 and deg(C) = 3. Then, rk = δk.

Demonstração. Let G∞ be the fiber of φ at infinity. Since ∆conic(x) = B(x)2, by
Proposition 2.4.2, G∞ is of type Dn with n = 9 − 2 deg(B).

Assume deg(B) = 0 or deg(B) = 1. Then G∞ is of type D9 or D7, respectively.
By Theorem 2.5.1, Df(E) = 0 irrespective of the type of fiber of π which has
components in common with G∞ (see Table 4).
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Assume deg(B) = 2. Then, G∞ is of type D5. By Theorem 2.5.1, Df(E) = 1 if
and only if G∞ has components in common with a fiber of π of type I∗

1 . Writing E in
the form of Equation 2.1, we have that a3(T ) is a nonzero constant, and deg(ai) ≤ 1
for i = 0, 1, 2. Then, deg(∆ell) ≤ 3. By Tate’s Algorithm, we deduce π has a fiber of
additive reduction with at least 7 components. Thus, G∞ has components in common
with a fiber of type I∗

m for m ≥ 2, so Df(E) = 0.

Applying Theorem 2.4.16, we deduce that rk = δk.

This result generalizes Theorem 2.2.4 to a general number field k.

2.5.3 Families of curves with Df(E) > 0

In this section we study families of curves E given by Equation 2.1 for which
Df(E) > 0. Then, Theorem 2.4.16 is not enough to determine the rank rk. We explore
cases in which we can use additional information to determine rk.

Proposition 2.5.6. Let E be a curve given by

y2 = µT 2 +B(x)T + C(x), (2.17)

where µ ∈ k×, deg(B) ≤ 2, deg(C) = 3. Then, Df(E) = 1.

Demonstração. By Proposition 2.4.2, the conic fiber G∞ at infinity is of type Dn

where n = 9 − deg(∆conic). Let Fa be the fiber of π with components in common
with G∞.

Assume deg(B) ≤ 1. Then G∞ is of type D6. By Table 4, Fa is of type IV ∗

or I∗
1 . Writing E in the form of Equation 2.1, we have deg(a0) = 2, deg(a1) ≤ 1 and

deg(a2) = deg(a3) = 0. Therefore, deg(∆ell) = 4, and by Tate’s Algorithm, π has
fiber of additive reduction at infinity with 7 components. Thus, Fa is of type IV ∗,
and by Theorem 2.5.1, Df(E) = 1.

Now, assume deg(B) = 2. Then G∞ is of type D5, and Fa is of type I∗
m for

some m ≥ 0. Similarly, writing E in the form of Equation 2.1, we have deg(a0) = 2,
deg(a1) ≤ 1, deg(a2) = 1 and deg(a3) = 0. Therefore deg(∆ell) = 5 and by Tate’s
Algorithm there is a fiber of additive reduction at infinity with 6 components. Thus
Fa is of type I∗

1 and by Theorem 2.5.1, Df(E) = 1.

In this situation, Theorem 2.4.16 is not enough to determine the rank rk of E .
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Proposition 2.5.7. Let E be a curve given by Equation 2.17. Then,

rk =

δk − 1 if µ ∈ k2,

δk if µ ∈ k \ k2.

Demonstração. For every θ ∈ k such that ∆conic(θ) = 0, let Pθ be the induced point
in E(k(T )) (see 2.3). Recall from Definition 2.4.8 that S is the set of points Pθ. By
(BATTISTONI; BETTIN; DELAUNAY, 2021, Proposition 12), we know that

∑
θ:∆(θ)=0

[nθ]Pθ = O ∈ E(k(T )), (2.18)

where ni = v(x−θ)(∆conic). Notice that since ∆conic(x) ∈ k[x], we have that nθ′ = nθ

if θ′ ∈ [θ]. By Proposition 2.5.6, Df(E) = 1. Therefore, Theorem 2.4.9 implies
that Equation 2.18 is the only linear relation between points of S, up to scalar
multiplication.

Assume µ is a square in k(θ). Then, √
µ ∈ k(θ). For any σ ∈ Gal(k/k), we

have

σ(Pθ) =


(
σ(θ),√µ(T + B(σ(θ))

2µ )
)

= Pθ if σ ∈ Gal(k/k(√µ)),(
σ(θ),−√

µ(T + B(σ(θ))
2µ )

)
= −Pθ if σ ̸∈ Gal(k/k(√µ)).

If µ ∈ k2, then k(√µ) = k. Thus, for each Σi ∈ Sk we can write Σi = ∑
θ′∈[θ] Pθ′

for some θ ∈ k such that ∆conic(θ) = 0. Then, Equation 2.18 determines a linear
relation between points of Sk. By Theorem 2.4.16, rk = δk − 1.

If µ ∈ k \ k2, then for each Σi ∈ Sk, Σi is the sum of Pθ′ for half of θ′ ∈ [θ],
and −Pθ for the other half. Then, any linear relation between point of Sk induces
a linear relation between points of S strictly different from Equation 2.18. Since
Df(E) = 1, this is not possible, so rk = δk.

Notice that this result generalizes Theorem 2.2.5 to any number field.

In what follows, we go back to curves given by Equation 2.16. We see that if
we allow B(x) to be a polynomial of degree 3, then the result of Proposition 2.5.5 no
longer holds in general.

Proposition 2.5.8. Let E be a curve given by

E : y2 = B(x)T + C(x), (2.16)
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where B(x) = x3 + ax2 + bx + c is a separable polynomial of degree 3 and C(x) =
λB(x) + µ, for λ ∈ k, µ ∈ k×. Then, Df(E) = 1, and

rk =

δk − 1 if µ ∈ k2,

δk if µ ∈ k \ k2.

Demonstração. Since deg(∆conic) = 6, the fiber G∞ of φ at infinity is of type D3.
Writing E in the form of Equation 2.1, we have

y2 = (T + λ)x3 + a(T + λ)x2 + b(T + λ)x+ c(T + λ) + µ.

The fibers of π which have components in common with G∞ are the fiber F−λ at
T = −λ and F∞ at infinity. We can calculate that v(T+λ)(∆ell) = 4, and since (T +λ)
divides a2, by Tate’s Algorithm, F−λ is of type IV .

On the other hand, by calculating the lead coefficient of ∆ell(T ), we have that
deg(∆ell) = 6 if and only if B(x) is separable. Then, by Tate’s Algorithm, F∞ is of
type I∗

0 . Thus, by Theorem 2.5.1, Df(E) = 1.

Let θ1, θ2, θ3 denote the roots of B(θ). Then, the point corresponding to θi in
E(k(T )) is Pi = (θi,

√
µ). By this equation, we have P1 ⊕ P2 ⊕ P3 = O. We prove the

formula for rk by using the same arguments as in Proposition 2.5.7.

Finally, we return to Example 2.5.3. Modifying the equation, we provide an
example of a family of curves with Df(E) = 2.

Example 2.5.9. Let E be given by

y2 = Tx3 + (T 2 + aT + 1)x2 + (2bT 2 + cT + 2d)x+ (b2T 2 + eT + d2),

for a, b, c, d, e, f ∈ k, and let γ(T ) = ∆ell(T )/T 2. By our choice of coefficients,
deg(γ(T )) ≤ 7, and γ(0) = 0. The fibers F0 and F∞ are the fibers of π which have
components in common with G∞, and by Tate’s algorithm, both are of type Im for
some m ≥ 3. By Theorem 2.5.1, Df(E) = 2.
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3 Elliptic fibrations on K3 surfaces with
non-symplectic automorphisms of prime
order

3.1 Introduction

This chapter is based on the paper (MEIRA, 2024), which was published on
Mathematische Nachrichten.

Let k be an algebraically closed field such that char(k) = 0. In this chapter,
our main objects of study are K3 surfaces X with a non-symplectic automorphism
σ of prime order p ≥ 3. In particular, we study the elliptic fibrations π : X → P1

on such a K3 surface, and classify them in different ways. We do this through
two main approaches. Firstly, we generalize the work of Garbagnati and Salgado
in (GARBAGNATI; SALGADO, 2019), (GARBAGNATI; SALGADO, 2020) and
(GARBAGNATI; SALGADO, 2024), in which the elliptic fibrations of a K3 surface
X are classified with respect to a non-symplectic involution ι according to the action
of ι on its fibers. We show that this classification, as well as its main results, can be
generalized to non-symplectic automorphisms of higher prime orders.

The Néron–Severi and transcendental lattices of every K3 surface X admitting
a non-symplectic automorphism σ of order 3 acting trivially on NS(X) were classified
by Artebani, Sarti and Taki on (ARTEBANI; SARTI, 2008), (TAKI, 2008). We make
use of this fact to apply the Kneser–Nishiyama method to determine the ADE-types
of every possible elliptic fibration in one of these surfaces. We show that we can
classify these elliptic fibrations with respect to the automorphism σ.

3.1.1 Chapter structure

Section 3.2 deals with a few preliminary results. In 3.2.1 we give a brief
summary of the distinct ways of classifying elliptic fibrations on K3 surfaces. In 3.2.2
we describe the Kneser–Nishiyama method for determining the ADE-types of elliptic
fibrations on K3 surfaces. Finally, in 3.2.3 we present the classification of elliptic
fibrations of X with respect to σ a non-symplectic automorphism of prime order.

In Section 3.3, we study elliptic fibrations on K3 surfaces with a non-symplectic
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automorphism of order 3. In 3.3.1 and 3.3.2 we determine properties of elliptic
fibrations π : X → P1 of type 1 and 2 with respect to σ, respectively. In 3.3.3 we
relate the different types of elliptic fibrations of X with respect to σ and different
classes of linear systems on the minimal resolution R̃ of the quotient X/σ. In 3.3.4,
we use the induced linear systems to determine explicitly equations for the generic
fibers of elliptic fibrations of type 1 and 2 with respect to σ.

In Section 3.4, we apply the Kneser–Nishiyama method to all K3 surfaces X
with Picard number at least 12 admitting a non-symplectic automorphism σ of order
3, under the assumption that the automorphism acts trivially on its Néron–Severi
group. Table 61 shows every fibration in these surfaces, their respective ADE-types
and their Mordell–Weil groups. Sections 3.4.1, 3.4.2 and 3.4.3 show the explicit
calculations involved in the application of the Kneser–Nishiyama method. In 3.4.4,
we classify the fibrations in Table 6 with respect to the automorphism σ.

In Section 3.5 we illustrate our method described in Section 3.3 by applying
it to the X3 surface. This surface was first studied by Shioda and Inose in (INOSE;
SHIODA, 1977) and Vinberg in (VINBERG, 1983), and in (NISHIYAMA, 1996),
Nishiyama presented a J2-classification of Jacobian elliptic fibrations of X3. We
exhibit Weierstrass equations for each fibration in J2(X3) (see Theorem 3.5.6, 3.5.5).

Finally, Section 3.6 deals with generalizing the results of Section 3.3 to non-
symplectic automorphisms of prime order p > 3. In 3.6.1, we determine the necessary
ramified fibers so that the base change of a rational elliptic surface by a Galois cover
of degree p becomes a K3 surface. In 3.6.2, we show that every elliptic fibration on
a K3 surace X with a non-symplectic automorphism of prime order p > 3 acting
trivially on NS(X) comes from such a base change. We use this fact to deduce the
Kodaira types of the possible reducible fibers on these elliptic fibrations, and to
determine explicit equations for their generic fibers.

3.2 Preliminaries

3.2.1 Classification of elliptic fibrations on K3 surfaces

Let X be a K3 surface. By Proposition 1.3.13, every embedding of the
hyperbolic lattice U into NS(X) induces an elliptic fibration on X. Consequently,
when NS(X) allows for multiple distinct embeddings of U , X admits multiple elliptic
fibrations. As such, it is useful to define ways in which two elliptic fibrations π and
π′ of X are equivalent. The classifications presented here are studied in depth in
(BRAUN; KIMURA; WATARI, 2013).
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Definition 3.2.1. Let π, π′ be elliptic fibrations on X with respective zero-sections
s, s′. Then

i) π and π′ are J0-equivalent if there is g ∈ Aut(P1) such that π′ = g ◦ π and
s′ = s ◦ g.

ii) π and π′ are J1-equivalent if there is g ∈ Aut(P1) and σ ∈ Aut(X) such that
π′ = g ◦ π ◦ σ and s′ = σ ◦ s ◦ g.

The sets of elliptic fibrations on X modulo J0 and J1-equivalence are denoted as
J0(X) and J1(X), respectively.

Notice that if π and π′ are J0 equivalent, then they are J1 equivalent by
taking idX as the automorphism. The J1 classification is particularly important
because of the following theorem.

Theorem 3.2.2. On any given K3 surface X, there are finitely many elliptic
fibrations up to J1-equivalence.

Demonstração. See (STERK, 1985, Proposition 2.6, Corollary 2.7).

If π and π′ are J1-equivalent, then the frame lattices Wπ and Wπ′ are iso-
morphic. This motivates a third type of classification.

Definition 3.2.3. Let π, π′ be elliptic fibrations of X. We say that they are J2-
equivalent if Wπ

∼= Wπ′ . The set of elliptic fibrations of X modulo J2-equivalence is
denoted by J2(X).

This definition allows us to translate the classification problem to pure lattice
theory.

Definition 3.2.4. Let L be an even lattice. The discriminant group of L is defined
as GL := L∨/L, where L∨ is the dual lattice of L. The discriminant form of L is a
map qL : GL → Q/2Z, given by x 7→ ⟨x, x⟩ mod 2Z. The pair (GL, qL) is called the
discriminant lattice of L.

Let J ′
2(X) be the set of all even lattices, modulo isometries, with signature

(0, ρ(X) − 2) and discriminant lattice isomorphic to (GNS(X), qNS(X)). Then, J2(X)
is a subset of J ′

2(X).

Proposition 3.2.5. Let X be a K3 surface with ρ(X) ≥ 12. Then, J ′
2(X) = J2(X).

Demonstração. See (SCHüTT; SHIODA, 2010, Lemma 12.21).
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3.2.2 The Kneser–Nishiyama method

Based on lattice theoretic techniques developed by Kneser in (KNESER,
1956), Nishiyama developed a method of obtaining J ′

2(X) for K3 surfaces X with
known NS(X) and TX (see (NISHIYAMA, 1996)). In particular, by Proposition 3.2.5,
this method determines J2(X) when ρ(X) ≥ 12. This is known in the literature as
the Kneser–Nishiyama method. In what follows we present a brief overview of it. See
(BERTIN et al., 2015, Section 4.1) or (BRAUN; KIMURA; WATARI, 2013, Section
4.1) for a similar overview.

Definition 3.2.6. A Niemeier Lattice is an even, unimodular, negative definite
lattice of rank 24.

Theorem 3.2.7. Niemeier lattices are uniquely defined by their root types up to
isometry, of which there are only 24 possibilities.

Demonstração. See (NIEMEIER, 1973, Theorem 8.5).

Let X be a K3 surface with transcendental lattice TX .

Theorem 3.2.8. Let T0 be a lattice of root type such that rank T0 = rank TX + 4,
GT0 = GTX

and qT0 = qTX
. Then, every W ∈ J ′

2(X) can be written as φ(T0)⊥L,
for φ : T0 → L a primitive embedding into a Niemeier lattice L. Furthermore, if
ρ(X) ≥ 12, then there is an elliptic fibration π : X → P1 such that W = Wπ, and
the following holds.

i) Let M = φ(T0)⊥Lroot. Then the ADE-type of π is Mroot and isomorphic to
Wroot.

ii) The rank of MW(π) is given by rankM − rankMroot.

iii) The torsion part of MW(π) is isomorphic to Mroot/Mroot, where Mroot is the
primitive closure of Mroot.

Demonstração. See (NISHIYAMA, 1996, Section 6.1, Section 6.2).

The Kneser–Nishiyama method consists of the application of the previous
result to obtain J ′

2(X). We describe it in the following steps.

1. Find a suitable lattice T0 of root type.
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2. For each Niemeier lattice L, determine every possible primitive embedding
φ : T0 → Lroot, up to actions of the Weyl group W(L) (see (BOURBAKI, 1968,
Chapter 6, Definition 1)).

3. For each embedding φ, compute the orthogonal lattices M := φ(T0)⊥Lroot and
the root type Mroot = Wroot.

4. Compute the rank of the Mordell–Weil group, given by rankM − rankMroot,
and the torsion, given by Mroot/Mroot.

3.2.3 Classification of fibrations with respect to a non-symplectic auto-
morphism

In (GARBAGNATI; SALGADO, 2019), Garbagnati and Salgado define a
classification of elliptic fibrations on a K3 surface in relation to a non-symplectic
involution ι. This definition generalizes nicely to any non-symplectic automorphism
σ of prime order. In this section, we reproduce this definition and show some of its
main properties. Firstly, we fix some notation.

Notation 3.2.9. Let S be a surface and σ an automorphism of S. We say that a
point p ∈ S is fixed by σ if σ(p) = p. Let C ⊂ S be a curve. We say that C is fixed
by σ if every point p ∈ C is fixed by σ, i.e. if σ|C = idC , and C is preserved by σ if
C is not fixed by σ but σ(C) = C.

Definition 3.2.10. Let (X, σ) denote a pair consisting of X a K3 surface, and σ a
fixed non-symplectic automorphism of X of prime order p. We classify an elliptic
fibration π : X → P1 with respect to σ as follows.

1) π is of type 1 if every Fv = π−1(v) is preserved by σ.

2) π is of type 2 if σ fixes the fiber class F in NS(X), but σ is not of type 1 (i.e.
there exist distinct v, v′ ∈ P1 such that σ(Fv) = Fv′).

3) π is of type 3 if σ does not fix the class of the fiber F in NS(X).

Remark 3.2.11. Assume σ acts trivially on NS(X). Then, in particular, σ fixes the
fiber class, so (X, σ) does not admit elliptic fibrations of type 3.

The following two propositions are adapted from (GARBAGNATI; SAL-
GADO, 2020, Proposition 2.5, Theorem 2.6), considering non-symplectic auto-
morphisms of any prime order. We present the proofs for completeness.
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Proposition 3.2.12. Suppose π is an elliptic fibration of type 1 on (X, σ), and
σ acts trivially in NS(X). Then every section of π is fixed by σ. Consequently,
rank MW(π) = 0.

Demonstração. Let C ⊂ X be a smooth rational curve. Since σ acts trivially on
NS(X), and rational curves are unique in their class on K3 surfaces, σ(C) = C. Then,
if Σ is a section of π, since σ acts trivially on the base of the fibration, Σ must be
fixed by σ. The number of curves fixed by σ is finite, so rankMW (π) = 0.

Proposition 3.2.13. Assume (X, σ) admits an elliptic fibration of type 2. Then,
every curve fixed by σ has genus g ≤ 1.

Demonstração. Let π : X → P1 be a type 2 elliptic fibration of (X, σ), and C ⊂ X a
curve fixed by σ. Suppose C is a multi-section of π. Then, C intersects any fiber with
positive multiplicity, and the intersection points must be fixed. However, since π is
of type 2, there are distinct fibers Fv and Fu such that σ(Fv) = Fu, so Fv does not
have fixed points. Therefore, C must be a fiber component of π, so g(C) ≤ 1.

3.3 K3 surfaces with non-symplectic automorphisms of order 3

In Section 3.2.3, we have seen how to classify elliptic fibrations of a K3 surface
in relation to a non-symplectic automorphism of prime order p. The case of p = 2
was studied extensively by Garbagnati and Salgado in (GARBAGNATI; SALGADO,
2019), (GARBAGNATI; SALGADO, 2020) and (GARBAGNATI; SALGADO, 2024).
In what follows, we deal with the case p = 3. The choice of focusing in this order
comes from Proposition 3.3.1, in which we see that fibrations of type 1 do not occur
with respect to automorphisms of higher prime order.

3.3.1 Fibrations of type 1

Let π : X → P1 be an elliptic fibration of type 1 on (X, σ). Since the auto-
morphism σ preserves every fiber of π, we can consider the restriction of its action to
said fibers. This allows us to deduce properties of both σ and the singular fibers of π.

Proposition 3.3.1. Let X be a K3 surface and σ ∈ Aut(X) a non-symplectic
automorphism of prime order p. If (X, σ) admits an elliptic fibration π : X → P1 of
type 1, then p = 2 or 3. Furthermore, if p = 3, the singular fibers of π must be of
type I∗

0 , II, IV, II
∗ or IV ∗.
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Remark 3.3.2. This list of possible fibers for an elliptic fibrations of type 1 with
respect to a non-symplectic automorphism of order 3 is given in (OHASHI; TAKI,
1989, Proposition 3.5.(4)), with the added assumption that σ fixes a curve of genus
g ≥ 2. We present the proof for completeness.

Demonstração. Assume (X, σ) admits an elliptic fibration π : X → P1 of type 1.
Then, σ acts as an automorphism of order p on each fiber. In particular, for a smooth
fiber Fv, σ acts as an automorphism of a genus 1 curve. By (SILVERMAN, 1986,
Chapter X, Proposition 5.1), σ corresponds with (P, α), where P is a point of Fv
and α an automorphism of Fv as an elliptic curve. In particular, σ = τP ◦ α, where
τP is the translation by P map. Thus, assuming α = id, we obtain that σ acts on X
as the translation by a section of π. If this was true, then σ would be a symplectic
automorphism. Since by hypothesis σ is non-symplectic, we can assume α ̸= id for
every smooth Fv. Then, σp = id corresponds to (∑p−1

i=0 α
i(P ), αp), so the order of

α is p. By (SILVERMAN, 1986, Chapter III, Theorem 10.1), the only admissible
automorphism groups of elliptic curves are Z/2, Z/4 and Z/6, so p can only be 2 or
3.

If p = 3, then there is a Z/6 action on each smooth fiber of π, and their short
Weierstrass form must be y2 = x3 +B. Consequently, the J-function of π is constant
and equal to zero. The only types of singular fibers with J(F ) = 0 are I∗

0 , II, IV, II
∗

and IV ∗ (see (MIRANDA, 1989, Table IV.3.1)).

Remark 3.3.3. If p = 2 and the quotient X/σ is a relatively minimal rational elliptic
surface, the singular fibers of a fibration of type 1 were classified in (GARBAGNATI;
SALGADO, 2019, Theorem 5.3).

In what follows, we often work under the assumption that σ acts trivially
on the Néron–Severi group of X. When this is the case, we obtain the following
improvement on the result of Proposition 3.3.1.

Proposition 3.3.4. Let X be a K3 surface and σ a non-symplectic automorphism
of order 3 acting trivially on NS(X). If π : X → P1 is an elliptic fibration of type 1
on (X, σ), then π does not admit fibers of type I∗

0 .

Demonstração. By the action of σ, we can write the equation for the generic fiber
of π as y2 = x3 +B(t). In this equation, we can see the automorphism σ explicitly
as (x, y, t) 7→ (ζ3x, y, t), where ζ3 = −1+i

√
3

2 is the cubic root of unity. Assume π
has a singular fiber Fv of type I∗

0 . By Tate’s algorithm, after a suitable change of
coordinates, we can write this equation as y2 = x3 + t3f(t), where f(t) ̸= 0 and
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Fv is the resolution of the singular fiber at t = 0. After blowing-up the singularity
at the origin, we obtain the equation Y 2 = t(X3 + f(t)), where X = x/t and
Y = y/t. This equation yields a surface with 3 A1 singularities at ( 3

√
−f(t), 0, 0),

(ζ3
3
√

−f(t), 0, 0) and (ζ2
3

3
√

−f(t), 0, 0). The action of σ is lifted to the blow-up by
(X, Y, t) 7→ (ζ3X, Y, t), so the A1 singularities are permuted. Thus, σ permutes the
3 components of Fv coming from the resolution of the A1 singularities, and σ acts
nontrivially on NS(X).

When σ acts trivially on NS(X), sufficient conditions for the existence of an
elliptic fibration of type 1 on (X, σ) were given in (ARTEBANI; SARTI, 2008).

Proposition 3.3.5. If σ acts trivially in NS(X) and fixes at least 2 curves, then
(X, σ) admits an elliptic fibration of type 1.

Demonstração. See (ARTEBANI; SARTI, 2008, Proposition 4.2).

3.3.2 Fibrations of type 2

We begin this section by describing a natural way to exhibit explicitly a pair
(X, σ) with X a K3 surface and σ a non-symplectic automorphism admitting an
elliptic fibration of type 2. We do this by starting from a rational elliptic surface
π : R → P1 and applying the base change by a Galois covering τP1 : P1 → P1. By
resolving singularities and contracting (−1)-curves of the resulting surface R ×P1 P1,
we obtain a surface X with a relatively minimal elliptic fibration πX : X → P1. The
Galois morphism on P1 lifts to an automorphism of X of order equal to the degree
of τP1 . Assume that X is a K3 surface. Since the quotient by σ is birational to R, by
Theorem 1.3.12 σ is non-symplectic. Furthermore, fibers of πX above points of P1

outside the branch locus of τP1 are permuted, so πX is of type 2 on (X, σ).

Proposition 3.3.6. Let π : R → P1 be a rational elliptic surface, τP1 : P1 → P1 a
cubic Galois covering ramified at a, b ∈ P1 and Fa, Fb the fibers of π above a and b.
The surface X obtained taking the base change of π by τP1 is a K3 if and only if one
of Fa, Fb is of type I∗

n or IV , while the other is of type In, II or III.

Demonstração. By the canonical divisor formula for elliptic surfaces (see (SCHüTT;
SHIODA, 2019, Theorem 5.28)), Noether’s Formula (see (BEAUVILLE, 1996, I.14))
and Serre duality ((BEAUVILLE, 1996, Theorem I.11)), the surface X in an elliptic
fibration with basis P1 is a K3 surface if and only if its Euler number e(X) (see
(SCHüTT; SHIODA, 2019, Section 4.7)) is equal to 24. By (SCHüTT; SHIODA,
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2019, Theorem 5.31), e(X) = ∑
v∈P1 e(FX

v ), where FX
v = π−1

X (v). Let u, v be points
in P1 such that τP1(v) = u. Then, the Euler number of FX

v is known in terms of the
Kodaira type of Fu and the ramification index r(v|u) (see (MIRANDA, 1989, Table
VI.4.1)). Knowing that e(R) = ∑

u∈P1 e(Fu) = 12, we obtain the result by checking
for which Kodaira types of Fa and Fb we obtain e(X) = 24.

Let X be a K3 surface and σ ∈ Aut(X) a non-symplectic automorphism of
order 3. In what follows, we aim to use Proposition 3.3.6 to describe the configuration
of fibers on an elliptic fibration of type 2 on (X, σ). As a first step, we study the
properties of the quotient X/σ.

By Theorem 1.3.12, we know X/σ is rational, but in general, it is not a
rational elliptic surface. Let x ∈ X be a fixed point of σ. By Proposition 1.3.10 the
local action of σ around a fixed point x ∈ X can be linearized as

A =
ζ i3 0

0 ζj3

 ,
where ζ3 = −1+i

√
3

2 is the cubic root of unity. Since σ is non-symplectic, we deduce
that i = 1 and j = 0, or i = j = 2. In the former case, since j = 0, x is part of a fixed
curve. In the latter case, x is an isolated fixed point. Notice that by Theorem 1.3.9,
both cases are admissible. Assume x is an isolated fixed point, and let τ : X → X/σ

be the quotient map. Then, by the action of A, we can infer that τ(x) is a singularity
of type 1

3(1, 1) (see (REID, 2003)). In order to circumvent this, we can first blow-up
the isolated fixed points of σ.

Proposition 3.3.7. Let ηX : X̃ → X be the blow-up of the isolated fixed points of σ.
Then, the following statements are true.

i) Every elliptic fibration π : X → P1 lifts to an elliptic fibration π̃ : X̃ → P1, and
both fibrations are isomorphic on an open set of P1.

ii) We can lift σ to an automorphism σ̃ of X̃ which fixes the exceptional curves of
ηX .

iii) Let R̃ := X̃/σ̃, and τ̃ : X̃ → R̃ be the quotient map. Then, R̃ is isomorphic to
the minimal resolution φ of X/σ, and the following diagram commutes.

R̃ X̃

X/σ X
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Demonstração. i) Let [F ] be the class of a fiber and Σ0 the zero-section of π in
NS(X), and write F̃ := η∗

X(F ) and Σ̃0 := η∗
X(Σ0). Since a general smooth fiber of π

does not intersect the isolated fixed points of σ, the pencil |F̃ | induces an elliptic
fibration on X̃, and we can choose Σ̃0 as the zero-section.

ii) The surface X̃ can be described locally around an exceptional divisor by
coordinates (z1, z2, t) with z2 = tz1. We define σ̃ by the map (z1, z2, t) 7→ (ζ2

3z1, ζ
2
3z2, t).

Then, σ̃ agrees with σ outside of z1 = z2 = 0, and fixes the exceptional curve.

iii) Let Z = {P1, ..., Pn} be the set of isolated fixed points of σ, and
Z̃ = {E1, ..., En} the set of corresponding exceptional curves on X̃. The open subsets
X \ Z and X̃ \ Z̃ are isomorphic, and σ and σ̃ agree under this identification. By
taking the respective quotients, we obtain that the open sets Y \ φ−1(τ(Z)) and
R̃ \ τ̃(Z̃) are isomorphic. For any isolated fixed point Pi, we know that E2

i = −1
and it is fixed by σ̃. Then Ci = τ̃(Ei) is rational and its self intersection is
C2
i = Ci · τ̃∗(Ei) = Ei · τ̃ ∗(Ci) = 3E2

i = −3. By (REID, 2003, Example 3.1) the mini-
mal resolution of a singularity of type 1

3(1, 1) is a rational curve with self-intersection
−3, so Y and R̃ are isomorphic as claimed.

Remark 3.3.8. For a K3 surface with a non-symplectic automorphism of higher
prime orders, Proposition 3.3.7 does not necessarily hold. For example, assume σ is
a non-symplectic automorphism of order 5 and p an isolated fixed point with local
action given by (z1, z2) 7→ (ζ2

5z1, ζ
4
5z2). Extending the action of σ to the blow-up of

p, we obtain (z1, z2, t) 7→ (ζ2
5z1, ζ

4
5z2, ζ

2
5 t). In this case, the exceptional divisor is not

fixed by σ̃. Consequently, σ̃ still has isolated fixed point and the quotient X̃/σ̃ is
singular.

Proposition 3.3.9. Let π : X → P1 be an elliptic fibration of type 2 on (X, σ), and
assume σ preserves the zero-section. Then, π induces an elliptic fibration πR̃ : R̃ → P1,
so R̃ is a rational elliptic surface.

Demonstração. By Proposition 3.3.7, π induces an elliptic fibration π̃ on X̃. Let F̃
be the fiber class and Σ̃0 the zero-section of π̃. Let τ̃ : X̃ → R̃ be the quotient by
σ̃, and denote D = τ̃(F̃ ) and C = τ̃(Σ̃0). We claim that the pencil |D| induces an
elliptic fibration on R̃, and we can choose C as the zero-section.

Since π is of type 2, every curve in the fixed locus of σ is a fiber component.
For all but finitely many choices of v1 ∈ P1, there are three distinct smooth fibers F̃v1 ,
F̃v2 and F̃v3 in an orbit of σ̃. Consequently, for a generic choice of Dv in the pencil
|D|, the map τ̃ defines a cubic covering of Dv by 3 disjoint smooth genus 1 curves.
By the Riemann–Hurwitz Theorem, Dv must also be smooth of genus 1, and |D| a
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genus 1 pencil. Furthermore, D2 = τ̃∗F̃ ·Dv = F̃ · τ̃ ∗(Dv) = F̃ · (F̃v1 + F̃v2 + F̃v3) = 0,
so |D| induces an elliptic fibration πR̃ : R̃ → P1. Since Σ̃0 is preserved by σ̃, we have
τ̃ ∗(C) = Σ̃0, and we can calculate the intersection product D · C = τ̃∗(F̃1) · C =
F̃1 · Σ̃0 = 1. Thus, C is a section, and we conclude that πR̃ is an elliptic fibration
with C as the zero-section.

Let R be the relatively minimal model of R̃ with respect to the elliptic
fibration πR̃. There is a blow-down ηR : R̃ → R and R is endowed with a relatively
minimal elliptic fibration πR : R → P1 such that πR̃ = ηR ◦ πR.

Proposition 3.3.10. Let πX : X → P1 be an elliptic fibration of type 2 on (X, σ),
and assume σ preserves zero-section. Then, there is a map τP1 : P1 → P1 such that
π : X → P1 is the base change of the rational elliptic surface πR : R → P1 by τP1,
and σ is the induced automorphism.

Demonstração. Let s0 : P1 → X be the zero-section of π and s0(P1) = Σ0. Notice that
since Σ0 is preserved by σ, we can define an automorphism of P1 as σP1 = π ◦ σ ◦ s0.
Since s0 is a section, we have s0 ◦ π|Σ0

= idΣ0 , thus σ3
P1 = π ◦ σ3 ◦ s0 = idP1 .

Furthermore, by the definition of fibrations of type 2, σP1 acts nontrivially on P1, so
it has order 3. Let τP1 : P1 → P1 be the quotient map by σP1 .

Let U ⊂ P1 be an open set such that π−1
R̃

(v) is a smooth fiber for every v ∈ U .
Then, π−1

R̃
(U) is isomorphic to π−1

R (U), and the base change of πR by τP1 must be
birational to πX̃ : X̃ → P1. After resolving singularities and contracting (−1)-curves
on the fibers, by the uniqueness of the relatively minimal model of elliptic surfaces,
we obtain the fibration πX : X → P1. Furthermore, since the automorphism induced
by this base change agrees with σ on the dense open set π−1

R (U), they must agree
everywhere.

Both Proposition 3.3.9 and 3.3.10 have the hypothesis that σ preserves the
zero-section. Indeed, the Galois morphism obtained by taking the base change of
a rational elliptic surface will always fix this class. In the following proposition we
show that this condition is necessary.

Proposition 3.3.11. Let π : X → P1 be an elliptic fibration of type 2 in (X, σ) such
that none of its sections is preserved by σ. Then the induced map πR̃ : R̃ → P1 in
Proposition 3.3.9 is a fibration in genus 1 curves without section.

Demonstração. Let π̃ be the induced elliptic fibration on X̃, F̃ its fiber class and
Σ̃1, Σ̃2, Σ̃3 an orbit of its sections by the action of σ̃. Let τ̃ : X̃ → R̃ be the quotient
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by σ̃, and denote D = τ̃(F̃ ) and C = τ̃(Σ̃1) = τ̃(Σ̃2) = τ̃(Σ̃3). We can calculate the
intersection D · C = τ̃∗(F̃ ) · C = F̃ · τ̃ ∗(C) = F̃ · (Σ̃1 + Σ̃2 + Σ̃3) = 3. Thus, C is a
3-section of πR̃ : R̃ → P1.

Indeed, the conditions for Proposition 3.3.11 can happen. Let π is a fibration
of type 2 on (X, σ) such that σ preserves its zero-section and π has a 3-torsion section
P . Then the translation by P determines a symplectic automorphism σ′ : X → X.
Thus we can construct a non-symplectic automorphism σ′′ = σ ◦ σ′ such that none
of the sections of π are preserved by σ′′.

We can use Proposition 3.3.6 to prove the following.

Proposition 3.3.12. Let πX : X → P1 be an elliptic fibration of type 2 on (X, σ),
and assume σ preserves the zero-section. Then, σ preserves two fibers FX

a and FX
b ,

and every other fiber is in an orbit FX
v1 , F

X
v2 , F

X
v3 of σ. Furthermore, up to permuting

FX
a and FX

b we have the following.

i) FX
a is of type I0 or I∗

n for n = 0, 3, 6, 9, 12.

ii) FX
b is of type I∗

0 , III
∗ or Im for m = 0, 3, 6, 9, 12, 15, 18.

iii) FX
v1 , F

X
v2 and FX

v3 have the same type, which can be II, III, IV, IV ∗, I∗
n for

n = 0, 1 or Im for m = 0, 1, . . . , 6.

iv) There are no fibers of type II∗, I∗
n for n = 2, 4, 5, 7, 8, 10, 11, 13 or In for

n = 7, 8, 10, 11, 13, 14, 16, 17, 19.

Demonstração. By Proposition 3.3.10, π is the base change of a rational elliptic
surface πR : R → P1 by a Galois covering τP1 : P1 → P1 of degree 3 ramified over
a, b ∈ P1. By Proposition 3.3.6, we know Fa is of type IV or I∗

n and Fb is of type
II, III or Im. Since R is rational, we know by the Shioda–Tate formula (Corollary
1.1.18) that fibers of πR have at most 9 components, if Fu is of type Im or I∗

n, we
know m ≤ 9 and n ≤ 4.

Let FX
a , F

X
b be the fibers of π above Fa, Fb respectively. Then, by (MIRANDA,

1989, Table VI.4.1), we know FX
a is of type I0 or I∗

n for n = 0, 3, 6, 9, 12, and FX
b is

of type I∗
0 , III

∗ or Im, for m = 0, 3, 6, 9, 12, 15, 18. This proves (i) and (ii).

Let Fu be a fiber of πR for u ̸= a, b. Since u is not ramified by τP1 , there are
three distinct points v1, v2, v3 ∈ P1 such that τP1(vi) = u, and FX

vi
has the same type

as Fu. By (PERSSON, 1990), we know that any of the fiber types listed in (iii) are
possible for Fu.
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It remains to prove that the types listed in (iv) are not possible for Fu.
Firstly, notice that Fa has at least 3 components, so by Shioda–Tate Fu has at
most 7 components. Therefore, it remains to check for I∗

2 and I7. Since both have
7 components, we know Fa is of type IV and Fb is irreducible. However, these
configurations are impossible (see (MIRANDA, 1990, Table 2.1, No. 22 and 27)).

Corollary 3.3.13. Assume that σ acts trivially on NS(X). Then, every fiber other
than FX

a and FX
b is irreducible.

Demonstração. Assume FX
v is not irreducible, for v ̸= a, b. Then, σ takes the com-

ponents of FX
v to the components of another fiber. Since fiber components are

independent in NS(X), this constitutes a non-trivial action.

3.3.3 Classification by induced linear systems

Let X be a K3 surface with a non-symplectic involution ι. In work by
Garbagnati and Salgado, the elliptic fibrations of X are directly related to linear
systems on the quotient X/ι, which is shown to be a rational elliptic surface with the
assumption that ι fixes curves of genus at most 1 (see (GARBAGNATI; SALGADO,
2019), (GARBAGNATI; SALGADO, 2020)). Our goal is to study the linear systems
induced by elliptic fibrations on the resolution R̃ of the quotient X/σ (see 3.3.7).
In order to do this, we work with the following assumption through the rest of this
section.

Assumption 3.3.14. Let X be a K3 surface and σ ∈ Aut(X) a non-symplectic
automorphism of order 3. We assume that X admits an elliptic fibration πX : X → P1

of type 2 with respect to σ such that σ preserves the zero-section.

Let (X, σ, πX) be a K3 surface with Assumption 3.3.14. Let π be an elliptic
fibration on X (possibly distinct from πX). Then π induces a pencil of curves Λ on
R̃ by pulling back |F | by ηX , and then applying the pushforward by τ̃ . The following
theorem describes the relation between the type of an elliptic fibrations in 3.2.10 and
which kind of pencil it induces on R̃ (see Definitions 1.2.9 and 1.2.13)

Theorem 3.3.15. The induced pencil Λ is determined by the type of π.

i) π is of type 1 if and only if Λ is a conic bundle class of R̃.

ii) π is of type 2 if and only if Λ is a splitting genus 1 pencil of R̃.

iii) π is of type 3 if and only if Λ is a non-complete linear system.
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The proof of this theorem is a direct adaptation of (GARBAGNATI; SAL-
GADO, 2019, Theorem 4.2), in which the automorphism σ is a non-symplectic
involution. The biggest change is the necessity of pulling back the linear system to
X̃ before taking the quotient.

Demonstração. Let [F̃ ] be the class of a fiber of the elliptic fibration induced in X̃

by π and F̃v the pullback of Fv.

Suppose that π is of type 1. Then the action of σ on each Fv lifts to an
action of σ̃ on F̃v. The pencil Λ is given by the system of curves {Dv}v∈P1 , where
Dv = τ̃(F̃v) = F̃v/σ̃. Since σ has a finite number of isolated fixed points, for all but
finitely many v ∈ P1, Fv is smooth and Dv = Fv/σ. Applying the Riemann–Hurwitz
Theorem to the quotient map Fv → Dv, we know that g(Dv) = 0 if and only if
the map ramifies in two distinct points with index 3, and g(Dv) = 1 if and only
if it is unramified. If we assume g(Dv) = 1, then σ acts as the translation of a
torsion point of Fv as an elliptic curve, fixing its period. Furthermore, since this is
true for all but finitely many v ∈ P1 and σ acts as the identity on the base of π,
then σ must preserve the period of X. That is not possible due to the assumption
that σ is non-symplectic, so g(Dv) = 0. We can calculate the self intersection
as D2

v = Dv · τ̃(F̃v) = τ̃ ∗(Dv) · F̃v = 3F̃v · F̃v = 0. By the adjunction formula,
Dv ·KR̃ = −2. We conclude that Λ = |Dv| is a generalized conic bundle of R (with
respect to ηR : R̃ → R).

Suppose π is of type 2. By Proposition 3.3.9, we know that Λ consists of
the system of fibers {Dv}v∈P1 in an elliptic fibration. Consequently, D2

v = 0 and
g(Dv) = 1, and by the adjunction formula, Dv ·KR̃ = 0. Therefore, Λ is a splitting
genus 1 pencil.

Suppose π is of type 3. Then σ([F ]) = [F ′] and σ([F ′]) = [F ′′], for [F ], [F ′], [F ′′]
three distinct classes on NS(X), each respectively inducing distinct elliptic fibrations
π, π′, π′′. Pulling back these classes by ηX , we obtain [F̃ ], [F̃ ′], [F̃ ′′] distinct classes in
NS(X̃). Since they are supported on smooth curves of X̃, the intersection products
F̃ F̃ ′, F̃ F̃ ′′ and F̃ ′F̃ ′′ are all greater than 0. Let F̃ F̃ ′ + F̃ F̃ ′′ + F̃ ′F̃ ′′ = m > 0, then
(F̃ + F̃ ′ + F̃ ′′)2 = 2m. Since F̃ 2 = F̃ ′2 = F̃ ′′2 = 0, the linear system |F̃ + F̃ ′ + F̃ ′′|
is base point free. In particular, there is a smooth curve CX of genus m+ 1 whose
class is [F̃ + F̃ ′ + F̃ ′′]. As a consequence, |CX | = |F̃ + F̃ ′ + F̃ ′′| is an m + 1
dimensional linear system with smooth general elements (see (SAINT-DONAT, 1974,
Proposition 2.6)). On the other hand, the family of curves F̃v + F̃ ′

v + F̃ ′′
v , given by

η−1
X (π−1(v) + π′−1(v) + π′′−1(v)) for each v ∈ P1, has dimension 1 and reducible

general element. Taking Dv = τ̃(F̃v) = τ̃(F̃ ′
v) = τ̃(F̃ ′′

v ), we conclude Λ = {Dv}v∈P1 is
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a non-complete sub-linear system of |τ̃(CX)|.

3.3.4 Equations for elliptic fibrations of type 1 and 2

Let (X, σ, πX) denote a K3 surface, a non symplectic automorphism of order
3 and an elliptic fibration of type 2 following Assumption 3.3.14. By Proposition
3.3.10, πX is the base change of a rational elliptic fibration πR : R → P1 by a map
τP1 : P1 → P1. The fibration πR is constructed as a resolution η of a rational map
φ : P2 99K P1 given by [x:y:z] 7→ [F(x, y, z) : G(x, y, z)], and after a change of
coordinates, we can assume τP1 is given by [s:t] 7→ [s3:t3]. Thus, the generic fiber of
πX can be written as

πX : F(x, y, z) + t3G(x, y, z) = 0.

Now, let π : X → P1 be an elliptic fibration distinct from πX , and Λ the
induced linear system in R̃. Through the contractions ηR̃ : R̃ → R and η : R → P2, Λ
induces a pencil of curves Γ in P2. In this section, we show how to use Γ to deduce
an equation for the generic fiber of π, when π is of type 1 or 2 in relation to σ.

Let π : X → P1 be an elliptic fibration of type 1 on (X, σ). Then, Λ is a pencil
of rational curves in R̃.

Proposition 3.3.16. Let the restriction of πR : R̃ → P1 to Dv be given by the map

fv : Dv → P1

P 7→ [xv(P ) : yv(P )].

Then, we can write the generic fiber of π : X → P1 as

π : s3xv = t3yv.

Demonstração. Let Fv be a smooth fiber of π such that Fv is isomorphic to F̃v =
η−1
X (Fv). Notice that the following diagram commutes

Dv Fv

P1 P1.

By the universal property of fiber products, there is a 1-1 map Fv → Dv ×P1 P1.
Since Fv is smooth, this must be an isomorphism. Then, we can write Fv in coordinates
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(P, [s : t]), where P is a point in Dv and [s : t] on P1 such that fv(P ) = τP1([s:t]), that
is, [xv(P ):yv(P )] = [s3:t3]. This gives rise to the proposed equation for the generic
fiber.

Now, let π : X → P1 be an elliptic fibration of type 2 on (X, σ) distinct from
πX . By Proposition 3.3.10, we know that π is the base change of a rational elliptic
surface by a cubic Galois covering τP1 : P1 → P1.

Proposition 3.3.17. Let Fa, Fb be the fibers above the ramification points of τP1,
and Ca, Cb the induced curves in Γ. Then, we can write the generic fiber of π by the
following equation

π : Ca(x, y, z) + t3Cb(x, y, z) = 0.

Demonstração. By Theorem 3.3.15, we know that Λ is a genus 1 pencil inducing
an elliptic fibration π′ : R̃ → P1. Then, Γ must be a pencil of genus 1 curves in
P2 generated by Ca and Cb. For all but finitely many t ∈ P1, the fiber (π′)−1(t)
is isomorphic to Ca(x, y, z) + tCb(x, y, z) = 0. By a change of coordinates, we can
suppose that τP1 is given by the map t 7→ t3. Thus, applying the base change by τP1 ,
we obtain the wanted equation for the generic fiber of π.

Remark 3.3.18. In order to use this proposition, we need to know what are the
fibers of π : X → P1 above the ramification locus of τP1 . We can deduce this from the
ADE-type of π. By Proposition 3.3.12, every reducible fiber which is the only one
of its Kodaira type must be ramified by the base change, otherwise it would have 3
copies. For instance, if the ADE-type of π is D7 ⊕E7, then the only reducible fibers
are of type I∗

3 and III∗, and both need to be ramified by τP1 .

3.3.5 Conic bundles inducing elliptic fibrations

Let π : R → P1 be a relatively minimal rational elliptic surface and φ : R → P1

a conic bundle. Assume X is a K3 surface obtained by taking the base change of
π : R → P1 by a Galois cover τP1 : P1 → P1 of degree 2, and let ι be the induced
non-symplectic involution. Then, the conic bundle φ induces an elliptic fibration on
X of type 1 with respect to ι (see (GARBAGNATI; SALGADO, 2019, Theorem
5.3)).

In this section, we study the same phenomenon for base changes of degree
3. We work under the assumption that the base change of π : R → P1 by a Galois
cover τP1 : P1 → P1 produces a K3 surface X (that is, by Proposition 3.3.6 one of
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the ramified fibers is of type I∗
n or IV and the other is of type In, II or III). This

induces a non-symplectic automorphism σ of order 3 on X. By Theorem 3.3.15, we
know that every elliptic fibration πX : X → P1 of type 1 on (X, σ) comes from a conic
bundle on R. We ask the inverse question: when does a conic bundle φ : X → P1

determine an elliptic fibration of type 1 on (X, σ)?

We can see that in general this does not happen. Indeed, let Dv be a smooth
fiber of φ and let fv : Dv → P1 be the restriction of πR to Dv. Then, the fiber Bv

of πφ corresponding to Dv is isomorphic to the fiber product of fv : Dv → P1 by
τP1 : P1 → P1. We can calculate the ramification of the map Bv → Dv in order
to find the genus g(Bv). By Definition 1.2.9, we know that Dv · F = 2, where F
is the class of fibers of πR. Then, fv has degree 2, and ramifies at two distinct
points c, d ∈ P1. Assume that a, b, c, d are all distinct. Then, there are distinct points
a1, a2, b1, b2 ∈ Dv such that fv(ai) = a, fv(bi) = b for i = 1, 2. Furthermore, let a0, b0

be points of P1 such that τP1(a0) = a and τP1(b0) = b. Then, a1, a2, b1, b2, are the
ramification point of Bv → Dv, each having a single point in its pre-image, given by
(a1, a0), (a2, a0), (b1, b0), (b2, b0) respectively. Using the Riemann–Hurwitz Theorem,
we can calculate that g(Dv) = 2.

Proposition 3.3.19. Let φ : R → P1 be a conic bundle in R, and let a, b be the
points in P1 where τP1 : P1 → P1 ramifies. Then, φ induces an elliptic fibration in
X if and only if the map fv : Cv → P1 given by the restriction of πR to the fiber
Dv := φ−1(v) ramifies in either a or b for every v ∈ P1.

Demonstração. Suppose fv : Dv → P1 ramifies in a for every v ∈ P1, and assume that
the other ramification point is distinct from b. Then, the map Dv ×P1 P1 =: Bv → Dv

ramifies in a′, b1, b2, where fv(a′) = a and fv(b1) = fv(b2) = b. Applying the Riemann–
Hurwitz Theorem, we have g(Bv) = 1. On the other hand, if φ induces an elliptic
fibration on X, then for all but finitely many v ∈ P1 it is true that g(Bv) = 1, and
by the Riemann–Hurwitz Theorem the map Bv → Dv must ramify in 3 points. Let
cv, dv be the ramification points of fv. If cv, dv are distinct from a, b, then Bv → Dv

would ramify in 4 distinct points, and g(C ′
v) = 2. Then we can assume without loss

of generality that cv = a for every v ∈ P1.

Example 3.3.20. Let π : R → P1 be the rational elliptic surface induced by the pencil
of cubics Λ = sF + tG in P2, where F = y2z−x3 +xz2 −4z3 and G = (x+z)(x−z)z.
The pencil ΛP = αx − βz describes the lines of P2 through the point P = [0:1:0].
Since P is a base point of Λ, this induces a conic bundle φ : R → P1. We want to
show that φ defines an elliptic fibration on the base change of X through the map
τP1([s:t]) = [s3:t3].
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Firstly, notice that τP1 ramifies in the point [0:1], [1:0]. For every v = [α:β] ∈
P1, the line αx = βz in ΛP is the image of the following map

ρv : P1 −→ P2

[u1:u2] 7−→ [βu1:u2:αu1].

We can evaluate the map fv : Cv → P1 as the resolution of the composition of ρv
with the cubic map [x:y:z] 7→ [F(x, y, z):G(x, y, z)], thus obtaining

fv : P1 −→ P1

[u1:u2] 7−→ [αu2
2+(α2β−β3−4α3)u2

1:(αβ2−α3)u2
1].

Then, for each v = [α:β] the ramification points of fv are [1:0] and
[α2−β3−4α3:ab2−a3]. Since [1:0] is a ramification point of τP1 and of fv for every
v ∈ P1, φ induces an elliptic fibration on the base change X of R by τP1 .

3.4 A J2-classification of K3 surfaces with non-symplectic
automorphisms of order 3
In this section, our goal is to provide a J2-classification to K3 surfaces X

with a non-symplectic automorphism σ of order 3 acting nontrivially on NS(X). We
further assume that the Picard number of X is at least 12. Then, by Proposition 3.2.5,
the Kneser–Nishiyama method provides the full J2-classification (see Section 3.2.2).
By work of Artebani and Sarti, NS(X) must be equal to one of 10 possible lattices,
already assuming ρ(X) ≥ 12 (see (ARTEBANI; SARTI, 2008, Proposition 3.2)).
For each possibility, Table 5 shows explicitly the Néron–Severi and transcendental
lattices, as well as the number n of isolated fixed points of σ, the number m of
fixed curves of σ, and g the greatest genus amongst the fixed curves. Note that by
(ARTEBANI; SARTI, 2008, Theorem 3.3), for each line in Table 5 there exists a K3
surface X with ρ(X) ≥ 12, σ ∈ Aut(X) a non-symplectic automorphism of order 3,
and the corresponding lattices NS(X), TX .

Remark 3.4.1. The classification in Table 5 is expanded to higher prime orders in
(ARTEBANI; SARTI; TAKI, 2011, Tables 2–7). Let X be a K3 surface such that
ρ(X) ≥ 12 and σ ∈ Aut(X) a non-symplectic automorphism of prime order p > 3
acting trivially on NS(X). There are exactly 4 possibilities for the lattices NS(X), TX .
We do not apply the Kneser–Nishiyama method in these cases because there is no
suitable T0 of root type (see Theorem 3.2.8).
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No. NS(X) TX n m g
1 U ⊕ A⊕5

2 U ⊕ U(3) ⊕ A⊕3
2 5 2 0

2 U ⊕ E6 ⊕ A⊕2
2 U ⊕ U(3) ⊕ E6 5 3 1

3 U ⊕ E8 ⊕ A2 U⊕2 ⊕ E6 5 4 2
4 U ⊕ E6 ⊕ A⊕3

2 U ⊕ U(3) ⊕ A⊕2
2 6 3 0

5 U ⊕ E⊕2
6 U⊕2 ⊕ A⊕2

2 6 4 1
6 U ⊕ E⊕2

6 ⊕ A2 U ⊕ U(3) ⊕ A2 7 4 0
7 U ⊕ E6 ⊕ E8 U⊕2 ⊕ A2 7 5 1
8 U ⊕ E6 ⊕ E8 ⊕ A2 U ⊕ U(3) 8 5 0
9 U ⊕ E⊕2

8 U⊕2 8 6 1
10 U ⊕ E⊕2

8 ⊕ A2 A2(−1) 9 6 0

Tabela 5 – Genera and lattices for each pair (n,m)

Theorem 3.4.2. Let X be a K3 surface with ρ(X) ≥ 12 and σ ∈ Aut(X) a non-
symplectic automorphism acting trivially on NS(X). Then, Table 6 describes the
J2-classification of elliptic fibrations of X. Each fibration is given with its respective
ADE-type T , and Mordell–Weil group MW(π).

Demonstração. The proof of this theorem consists of a direct application of the
Kneser–Nishiyama method (see (NISHIYAMA, 1996)). An overview of this method is
described in the end of Section 3.2.2, and the explicit computations for the required
cases are presented in Sections 3.4.1, 3.4.2 and 3.4.3.
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3.4.1 Determining T0

The first step of the Kneser–Nishiyama method consists of finding a lattice
T0 of root type such that rank(T0) = rank(TX) + 4, GT0 = GTX

and qT0 = qTX
. Table

7 shows the choice explicitly for each TX in Table 5.

No. TX GTX
T0

1 U ⊕ U(3) ⊕ A⊕3
2 (Z/3Z)5 E6 ⊕ A⊕4

2
2 U ⊕ U(3) ⊕ E6 (Z/3Z)3 E⊕2

6 ⊕ A2
3 U⊕2 ⊕ E6 Z/3Z E8 ⊕ E6
4 U ⊕ U(3) ⊕ A⊕2

2 (Z/3Z)4 E6 ⊕ A⊕3
2

5 U⊕2 ⊕ A⊕2
2 (Z/3Z)2 E8 ⊕ A⊕2

2
6 U ⊕ U(3) ⊕ A2 (Z/3Z)3 E6 ⊕ A⊕2

2
7 U⊕2 ⊕ A2 Z/3Z E8 ⊕ A2
8 U ⊕ U(3) (Z/3Z)2 E6 ⊕ A2
9 U⊕2 {e} E8
10 A2(−1) Z/3Z E6

Tabela 7 – T0 for each surface X

Proposition 3.4.3. For every TX , T0 in Table 7, GTX
= GT0 and qT0 = qTX

.

Demonstração. Firstly, observe that for any L1, L2, we have GL1⊕L2 = GL1 × GL2

and qL1⊕L2 = qL1 + qL2 . This reduces the required calculations to the cases TX =
A2(−1), U⊕2, U ⊕ U(3) and T0 = E6, E8, E6 ⊕ A2, respectively. The lattices GTX

are
given in (ARTEBANI; SARTI, 2008, Lemma 1.3, Table 1), and both GT0 and qT0

can be calculated using (NISHIYAMA, 1996, Lemma 1.2).

Firstly, let TX = U⊕2. Since TX is unimodular, its discriminant group GTX
is

trivial, and consequently qTX
= 0.

Let TX = A2(−1), and write its generators as a1, a2, with a2
1 = a2

2 = 2,
a1 · a2 = −1. Then the discriminant group GTX

is generated by

w = 2
3a1 + 1

3a2.

Furthermore, we calculate its discriminant lattice

qTX
(w) ≡ 2

3 ≡ −4
3 mod 2Z.

Finally, let TX = U ⊕ U(3), and write its generators as u1, u2, u
′
1, u

′
2, with

u2
i = (u′

i)2 = ui · u′
j = 0, u1 · u2 = 1, and u′

1 · u′
2 = 3. Then GTX

is generated by
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w1 = 1
3u

′
1 + 1

3u
′
2

w2 = 2
3u

′
1 + 1

3u
′
2.

Then, we calculate

qTX
(w1) ≡ −4

3 mod 2Z

qTX
(w2) ≡ −2

3 mod 2Z.

Using (NISHIYAMA, 1996, Lemma 1.2), we can check that the values of GT0

and qT0 agree with the ones calculated above.

3.4.2 Embeddings into Niemeier Lattices

In this section, we show how to calculate the primitive embeddings of each
T0 in Table 7 into a Niemeier lattices L. Firstly, we notice that since every T0 has
a sublattice of type E6 or E8, every Niemeier lattice L which allows an embedding
φ : T0 → L must also have a sublattice of type En. These lattices are shown in Table
8.

Lroot L/Lroot
E⊕3

8 0
E8 ⊕D16 Z/2Z
E⊕2

7 ⊕D10 (Z/2Z)2

E7 ⊕ A17 Z/6Z
E⊕4

6 (Z/3Z)2

E6 ⊕D7 ⊕ A11 Z/12Z

Tabela 8 – Niemeier lattices containing an En sublattice

For any lattice L in Table 8, we can calculate the primitive embeddings of
A⊕ℓ

2 , E6 and E8 into the components of Lroot. We obtain an embedding φ : T0 → Lroot

by composing these embeddings together. Similarly, we calculate the orthogonal
φ(T0)⊥Lroot by composing the orthogonal lattices for each component of Lroot.

The primitive embeddings of A2, E6 and E8 into another root lattice are
shown in (NISHIYAMA, 1996, Lemmas 4.1, 4.2 and 4.3), and their corresponding
orthogonal lattices in (NISHIYAMA, 1996, Corollary 4.4). Furthermore, every possible
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embedding of a root lattice into a lattice of type En is shown in (NISHIYAMA, 1996,
Table 5.1).

We move to the calculation of primitive embeddings of A⊕ℓ
2 into An or Dn,

for ℓ ≥ 2, and their orthogonal complements. Firstly, we prove the following lemma.

Lemma 3.4.4. If N1, N2 are sublattices of a lattice L, N2 is of root type and
N2 ⊆ N⊥L

1 , then ((N1 ⊕N2)⊥L)root = (N⊥(N⊥L
1 )root

2 )root.

Demonstração. Since N2 is of root type, N2 ⊆ (N⊥L
1 )root ⊆ N⊥L

1 . Then,

N
⊥(N⊥L

1 )root
2 ⊆ N

⊥(N⊥L
1 )

2 = (N1 ⊕N2)⊥L.

Taking the root type of both sides, we get (N⊥(N⊥L
1 )root

2 )root ⊆ ((N1 ⊕N2)⊥L)root. Now
suppose x ∈ ((N1 ⊕N2)⊥L)root. Then, x is generated by roots and ⟨x, n1⟩ = 0 for all
n1 ∈ N1, so by definition x ∈ (N⊥L

1 )root. Since ⟨x, n2⟩ = 0 for all n2 ∈ N2, it is true
that x ∈ (N⊥(N⊥L

1 )root
2 )root. This gets us to the result.

Proposition 3.4.5. The primitive embeddings of A⊕ℓ
2 in An or Dn, up to an action

of their Weyl group, are as follows.

i) There is a unique embedding given by A⊕ℓ
2 = ⊕ℓ−1

i=0⟨a3i+1, a3i+2⟩ ⊂ An for
n ≥ 3ℓ− 1. Furthermore, the orthogonal of this embedding is

(A⊕ℓ
2 )⊥An

root =

0 if 3ℓ− 1 ≤ n ≤ 3ℓ,

An−3ℓ if n ≥ 3ℓ+ 1.

ii) There is a unique embedding given by A⊕ℓ
2 = ⊕ℓ

i=1⟨d3ℓ−1, d3ℓ⟩ ⊂ Dn for n ≥ 3ℓ.
Furthermore, the orthogonal of this embedding is

(A⊕ℓ
2 )⊥Dn

root =



0 if 3ℓ ≤ n ≤ 3ℓ+ 1,

A⊕2
1 if n = 3ℓ+ 2,

A3 if n = 3ℓ+ 3,

Dn−3ℓ if n ≥ 3ℓ+ 4.

Demonstração. We prove this by induction. When ℓ = 1, the primitive embeddings of
A2 into An and Dn are proved in (NISHIYAMA, 1996, Lemma 4.1, Lemma 4.2), and
their respective orthogonal lattices are calculated in (NISHIYAMA, 1996, Corollary
4.4). Suppose this is true for ℓ. Then, for n ≥ 3ℓ + 2, there is a unique primitive
embedding of A⊕ℓ

2 in An, and the orthogonal lattice is An−3ℓ = ⟨a3ℓ+1, ..., an⟩. We
know that A2 = ⟨a3ℓ+1, a3ℓ+2⟩ is the unique primitive embedding of A2 in An−3ℓ, up
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to an action of W (An−3ℓ) ⊂ W (An). Gluing together both embeddings, we obtain a
unique primitive embedding of A⊕ℓ+1

2 in An up to an action of W (An). By Lemma
3.4.4, (A⊕ℓ

2 )⊥An
root = (A⊥An−3ℓ

2 )root. This is equal to 0 if n = 3ℓ + 2 or 3ℓ + 3, and to
An−3ℓ−3 if n ≥ 3ℓ+ 4.

For n ≥ 3ℓ+ 3, we know that there is a unique primitive embedding of A⊕ℓ
2

in Dn, and the orthogonal is equal to A3 if n = 3ℓ+ 3, and to Dn−3ℓ if n ≥ 3ℓ+ 4. In
either case, there is a unique primitive embedding of A2 up to an action of the Weyl
group, thus obtaining an embedding of A⊕ℓ+1

2 in Dn. We can apply Lemma 3.4.4 to
obtain the result.

Using this result, we are able to explicitly show the generators of orthogonal
complements of primitive embeddings of a lattice N into a Niemeier lattice L, as
well as their root types, when N is a sum of A2, E6 and E8.

Firstly, we establish some notation. Let ai, di and ei denote the canonical
generators of the An, Dn and En lattices, respectively. For ease of notation, we define
elements αi in lattices of type An as follows.

αi = a3i−2 + 2a3i−1 + 3a3i + 2a3i+1 + a3i+2,

α′
i = a3i−2 + 2a3i−1 + 3a3i.

Then, letting δ0 = d1, we define the following elements of Dn recursively.

δi = δi−1 + d3i−1 + 2d3i + 2d3i+1 + d3i+2,

δ′
i = 2δi−1 + d3i−1 + d3i

+ d3i+1,

δ′′
i = δi−1 + d3i−1 + 2d3i + 2d3i+1.

Finally, we denote a general element of En as follows.
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λ2λ3

λ1
λ4λ5λ6

=
6∑
i=1

λiei,

λ2λ3

λ1
λ4λ5λ6λ7

=
7∑
i=1

λiei,

λ2λ3

λ1
λ4λ5λ6λ7λ8

=
8∑
i=1

λiei.

In Table 9, for pairs of lattices N,L, we explicitly present the unique primitive
embedding φ : N → L (up to an action of the Weyl group of L), the orthogonal
complement φ(N)⊥L and its root type (φ(N)⊥L)root.

Tabela 9 – Primitive embeddings and orthogonal complements
L N φ : N → L φ(N)⊥L (φ(N)⊥L)root

A11 A2 ⟨a1, a2⟩



−12 3 0 · · · 0
3

A8
0
...
0

 = ⟨α′
1, a4, ..., a11⟩ A8

A⊕2
2 ⟨a1, a2⟩⊕⟨a4, a5⟩



−6 3 0 0 · · · 0
3 −12 3 0 · · · 0
0 3

A5
0 0
... ...
0 0


= ⟨α1, α

′
2, a7, ..., a11⟩ A5

A⊕3
2 ⟨a1, a2⟩⊕⟨a4, a5⟩⊕⟨a7, a8⟩


−6 3 0 0 0
3 −6 3 0 0
0 3 −12 3 0
0 0 3 A20 0 0

 = ⟨α1, α2, α
′
3, a10, a11⟩ A2

A⊕4
2

⊕3
i=0⟨a3i+1, a3i+2⟩ A3(3) =

 −6 3 0
3 −6 3
0 3 −6

 = ⟨α1, α2, α3⟩ 0

A17 A2 ⟨a1, a2⟩



−12 3 0 · · · 0
3

A14
0
...
0

 = ⟨α′
1, a4, ..., a17⟩ A14
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L N φ : N → L φ(N)⊥L (φ(N)⊥L)root

A17 A⊕2
2 ⟨a1, a2⟩⊕⟨a4, a5⟩



−6 3 0 0 · · · 0
3 −12 3 0 · · · 0
0 3

A11
0 0
... ...
0 0


= ⟨α1, α

′
2, a7, ..., a17⟩ A11

A⊕3
2 ⟨a1, a2⟩⊕⟨a4, a5⟩⊕⟨a7, a8⟩



−6 3 0 0 0 · · · 0
3 −6 3 0 0 · · · 0
0 3 −12 3 0 · · · 0
0 0 3

A8
0 0 0
... ... ...
0 0 0


= ⟨α1, α2, α

′
3, a10, ..., a17⟩ A8

A⊕4
2

⊕3
i=0⟨a3i+1, a3i+2⟩



−6 3 0 0 0 0 · · · 0
3 −6 3 0 0 0 · · · 0
0 3 −6 3 0 0 · · · 0
0 0 3 −12 3 0 · · · 0
0 0 0 3

A5
0 0 0 0
... ... ... ...
0 0 0 0


= ⟨α1, α2, α3, α

′
4,

a13, ..., a17⟩
A5

A⊕5
2

⊕4
i=0⟨a3i+1, a3i+2⟩



−6 3 0 0 0 0 0
3 −6 3 0 0 0 0
0 3 −6 3 0 0 0
0 0 3 −6 3 0 0
0 0 0 3 −12 3 0
0 0 0 0 3 A20 0 0 0 0


= ⟨α1, α2, α3, α4,

α′
5, a16, a17⟩

A2

A⊕6
2

⊕5
i=0⟨a3i+1, a3i+2⟩ A5(3) =


−6 3 0 0 0
3 −6 3 0 0
0 3 −6 3 0
0 0 3 −6 3
0 0 0 3 −6

 = ⟨α1, α2, α3,
α4, α5⟩

0

D7 A2 ⟨d2, d3⟩


−4 −1 1 0 0
−1

D4
1
0
0

 = ⟨δ′
1, δ1, d5, d6, d7⟩ D4

A⊕2
2 ⟨d2, d3⟩ ⊕ ⟨d5, d6⟩

−4 −1 0
−1 −4 −2
0 −2 −4

 = ⟨δ′
1, δ

′
2, δ

′′
2⟩ 0

D10 A2 ⟨d2, d3⟩



−4 −1 1 0 · · · 0
−1

D7
1
0
...
0


= ⟨δ′

1, δ1, d5, . . . , d10⟩ D7

A⊕2
2 ⟨d2, d3⟩ ⊕ ⟨d5, d6⟩



−4 −1 0 0 0 0
−1 −4 −1 1 0 0
0 −1

D4
0 1
0 0
0 0


= ⟨δ′

1, δ
′
2, δ2,

d8, d9, d10⟩
D4

A⊕3
2 ⟨d2, d3⟩ ⊕ ⟨d5, d6⟩ ⊕ ⟨d8, d9⟩


−4 −1 0 0
−1 −4 −1 0
0 −1 −4 −2
0 0 −2 −4

 = ⟨δ′
1, δ

′
2, δ

′
3, δ

′′
3⟩ 0
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L N φ : N → L φ(N)⊥L (φ(N)⊥L)root

D16 A2 ⟨d2, d3⟩



−4 −1 1 0 · · · 0
−1

D13
1
0
...
0


= ⟨δ′

1, δ1, d5, . . . , d16⟩ D13

A⊕2
2 ⟨d2, d3⟩ ⊕ ⟨d5, d6⟩



−4 −1 0 0 0 · · · 0
−1 −4 −1 1 0 · · · 0
0 −1

D10
0 1
0 0
... ...
0 0


= ⟨δ′

1, δ
′
2, δ2,

d8, . . . , d16⟩
D10

A⊕3
2 ⟨d2, d3⟩ ⊕ ⟨d5, d6⟩ ⊕ ⟨d8, d9⟩



−4 −1 0 0 0 0 · · · 0
−1 −4 −1 0 0 0 · · · 0
0 −1 −4 −1 1 0 · · · 0
0 0 −1

D7
0 0 1
0 0 0
... ... ...
0 0 0


= ⟨δ′

1, δ
′
2, δ

′
3, δ3,

d11, . . . , d16⟩
D7

A⊕4
2

⊕4
i=1⟨d3i−1, d3i⟩



−4 −1 0 0 0 0 0 0
−1 −4 −1 0 0 0 0 0
0 −1 −4 −1 0 0 0 0
0 0 −1 −4 −1 1 0 0
0 0 0 −1

D4
0 0 0 1
0 0 0 0
0 0 0 0


= ⟨δ′

1, δ
′
2, δ

′
3, δ

′
4

δ4, d14, d15, d16⟩
D4

A⊕5
2

⊕5
i=1⟨d3i−1, d3i⟩



−4 −1 0 0 0 0
−1 −4 −1 0 0 0
0 −1 −4 −1 0 0
0 0 −1 −4 −1 0
0 0 0 −1 −4 −2
0 0 0 0 −2 −4


= ⟨δ′

1, δ
′
2, δ

′
3,

δ′
4, δ

′′
5 , δ

′′
5⟩ 0

E6 A2 ⟨e2, e3⟩ A⊕2
2 = ⟨e5, e6⟩ ⊕ ⟨e1, 12

2
321⟩ A⊕2

2

A⊕2
2 ⟨e2, e3⟩ ⊕ ⟨e5, e6⟩ A2 = ⟨e1, 12

2
321⟩ A2

E6 ⟨e1, ..., e6⟩ 0 0

E7 A2 ⟨e2, e3⟩ A5 = ⟨e5, e6, e7, 12
2
3210, e1⟩ A5

A⊕2
2 ⟨e2, e3⟩ ⊕ ⟨e5, e6⟩ (−6) ⊕ A2 = ⟨24

3
6543⟩ ⊕ ⟨e1, 12

2
3210⟩ A2

E6 ⟨e1, ..., e6⟩ (−6) = ⟨24
3
6543⟩ 0

E8 A2 ⟨e2, e3⟩ E6 = ⟨e8, e5, e6, e7, 12
2
32100, e1⟩ E6

A⊕2
2 ⟨e2, e3⟩ ⊕ ⟨e5, e6⟩ A⊕2

2 = ⟨e1, 12
2
32100⟩ ⊕ ⟨e8, 24

3
65432⟩ A⊕2

2

E6 ⟨e1, ..., e6⟩ A2 = ⟨e8, 24
3
65432⟩ A2
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3.4.3 Calculation of the torsion subgroups

In this section, we calculate the torsion subgroup of the Mordell–Weil group
of each fibration in Table 6. In (SHIMADA, 2000, Table 1), the possible torsion
subgroups are presented for each ADE-type. For most of the fibrations in Table 6,
there is only one admissible torsion subgroup, and thus there is no need to calculate
Wroot/Wroot explicitly. The fibrations with multiple admissible torsion subgroups
are 4.8, 6.9, 8.3, 8.6, 8.7, 9.2, 10.3 and 10.4. When rank MW(π) = 0, the torsion
subgroup is isomorphic to W/M (see (NISHIYAMA, 1996, Lemma 6.6)), and the
torsion can be determined by calculating detT0 = detW and detM . This allows
us to determine the torsion for fibrations 4.8, 6.9, 8.6 and 9.2. For 10.3 and 10.4,
the torsion subgroups were already calculated in (NISHIYAMA, 1996, Theorem 3.1,
Table 1.1).

Proposition 3.4.6. The torsion subgroups of fibrations 8.3 and 8.7 in Table 6 are
Z/2Z and 0, respectively.

Demonstração. We start with fibration 8.3. By ((SHIMADA, 2000, Table 1)), the
torsion subgroup is either Z/2Z or 0. We determine that the subgroup must be Z/2Z
by explicitly showing an order 2 element in Wroot/Wroot. The lattice T0 is embedded
in the Niemeier lattice Lroot = E⊕2

7 ⊕D10. Let e(1)
1 , . . . , e

(1)
7 , e(2)

1 , . . . , e
(2)
7 , d1, . . . , d10

be generators for Lroot. Then, T0 is embedded isomorphically onto the sublattice
⟨e(1)

1 , ..., e
(1)
6 ⟩ ⊕ ⟨e(2)

2 , e
(2)
3 ⟩ ⊂ Lroot. We calculate Wroot by taking the root type of the

orthogonal complement of φ(T0), obtaining

Wroot = ⟨e(2)
5 , e

(2)
6 , e

(2)
7 , (2e(2)

1 +e(2)
2 +2e(2)

3 +3e(2)
4 +2e(2)

5 +e(2)
6 ), e(2)

1 ⟩ ⊕ ⟨d1, ..., d10⟩.

Then, we can find an element η ∈ L \ Lroot such that 2η ∈ Wroot. Therefore,
η lies in the primitive closure Wroot, and the torsion subgroup is Z/2Z. Explicitly,

η = e
(2)
1 + e

(2)
5 + e

(2)
7 + d1 + d4 + d6 + d8 + d10

2 .

Now consider fibration 8.7. By ((SHIMADA, 2000, Table 1)), the torsion
subgroup is also given by either Z/2Z or 0. We determine that the subgroup
must be trivial by showing that no element of order 2 in L/Lroot is in Wroot. Let
Lroot = E6 ⊕D7 ⊕ A11 and e1, . . . , e6, d1, . . . , d7, a1, . . . , a11 be its generators. Then
T0 is embedded isomorphically into the sublattice ⟨e1, ..., e6⟩ ⊕ ⟨d2, d3⟩ ⊂ Lroot. We
calculate

Wroot = ⟨(d1+d2+2d3+d4), d5, d6, d7⟩ ⊕ ⟨a1, ..., a11⟩.
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By (NIEMEIER, 1973), L/Lroot = Z/12Z, so there is a single element of order 2
modulo Lroot. We can find µ in this class such that 2µ ̸∈ Wroot. Explicitly,

µ = d1 + d2 + a1 + a3 + a5 + a7 + a9 + a11

2 .

Consequently, the torsion subgroup is trivial.

3.4.4 Classification with respect to automorphisms

In this section, we apply the results in Section 3.6 to the fibrations in Table 6.

Proposition 3.4.7. The fibrations 1.1, 1.6, 1.7, 2.1, 2.3, 3.1, 4.1, 4.7, 4.8, 5.1, 5.2,
6.1, 6.2, 6.8, 6.9, 7.1, 8.1, 8.6, 9.1, 10.1, 10.5 in Table 6 are of type 1 with respect
to σ.

Demonstração. On all fibrations listed apart from 1.1, 1.7 and 4.8, the ADE-type
T has a component of type E6 or E8. Thus, by Table 1, they have a fiber of type
IV ∗ or II∗. The three remaining fibration have ADE-type T = A⊕ℓ

2 for ℓ > 2, so
in particular they have more than 2 reducible fibers. By Proposition 3.3.12 and
Corollary 3.3.13, all fibration listed cannot be of type 2. Since by assumption σ acts
trivially on NS(X), the fibrations must be of type 1.

Proposition 3.4.8. The fibrations 1.2–1.5, 1.8–1.10, 2.2, 4.2–4.6, 4.9–4.11, 5.3,
6.3–6.7, 6.10–6.12, 7.2, 8.2–8.5, 8.7, 8.8, 9.2, 10.2, 10.3, 10.4, 10.6 in Table 6 are
of type 2 with respect to σ.

Demonstração. All listed fibrations apart from 9.2, 10.2 and 10.6 have positive rank,
so by Proposition 3.2.12 they cannot be of type 1. The ADE-types T of the three
remaining fibrations all have a component Dn for n > 4, so by Table 1 they have
fibers of type I∗

n−4. Therefore, by Proposition 3.3.1, these fibrations are also not of
type 1.

Since we are able to determine the types of every fibration with respect to
the automorphism σ, we can use our results on the reducible fibers on fibrations of
type 1 and 2 to determine the following.

Corollary 3.4.9. On all fibration on Table 6, the ADE-type T determines the
Kodaira types of all reducible fibers.

Demonstração. By Table 1, the type Tv of a reducible fiber Fv corresponds uniquely
to the Kodaira-type of Fv, with the exception of A1 and A2. If Tv = A1, then the
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fiber Fv can be of type I2 or III; similarly if Tv = A2 then Fv is of type I3 or IV .
By Propositions 3.3.1 and 3.3.12 and Corollary 3.3.13, the fibrations on Table 6 do
not admit fibers of type I2 or III. Furthermore, if T has a component of type A2,
then it corresponds to a fiber of Kodaira type IV if π is of type 1 and I2 if π is of
type 2 with respect to σ.

3.5 Elliptic fibrations on X3

The X3 surface is the minimal resolution of (Eζ3 × Eζ3)/ρ, where ζ3 is a
primitive cube root of unity, Eζ3 the elliptic curve with torus C/(Z + ζ3Z) and ρ

the automorphism given by ρ(z1, z2) = (ζ3z1, ζ
−1
3 z2). It was first studied by Shioda

and Inose in (INOSE; SHIODA, 1977), and subsequently by Vinberg in (VINBERG,
1983), where it was first denoted by X3 and described as one of the most algebraic
K3 surfaces. The X3 surface was also studied in (GEEMEN; TOP, 2006), where it
was seen as a special fiber in a larger family of K3 surfaces. In particular, we know
that ρ(X3) = 20 and X3 admits a non-symplectic automorphism σ of order 3 which
acts trivially on NS(X3). Therefore, by the classification in Table 5, we know that
NS(X3) = U ⊕ E⊕2

8 ⊕ A2 and the fixed locus of σ consists of 9 isolated points and 6
rational curves. Furthermore, by (ARTEBANI; SARTI, 2008, Proposition 5.1), the
moduli space of K3 surfaces with these properties is irreducible. In particular, since
ρ(X3) = 20, any K3 surface X with ρ(X) = 20 and a non-symplectic automorphism
of order 3 acting trivially on NS(X) is isomorphic to X3.

The J2-classification of elliptic fibrations on X3 appears on Table 6, but it was
first presented as an application of the Kneser–Nishiyama method in (NISHIYAMA,
1996). Furthermore, (BRAUN; KIMURA; WATARI, 2013, Corollary D) shows that
J1(X3) = J2(X3), that is, there is exactly one elliptic fibration on X3 in each J2-class
modulo Aut(X3).

In this section, we use the X3 surface in order to show the relation between
the elliptic fibrations on a K3 surface and the linear systems on the resolution of its
quotient by a non-symplectic automorphism of prime order. This method also allows
us to find explicit Weierstrass equations for an elliptic fibration in each class. We
start in Section 3.5.1 by constructing X3 as a base change of a rational elliptic surface
R by a cubic Galois cover, which endows the K3 surface with a non-symplectic
automorphism σ of order 3. In Section 3.5.2, we provide an elliptic fibration in each
class of J1(X) by describing the fiber class and a section, and apply Theorem 3.3.15
to classify each in relation to σ. In Section 3.5.3, we apply Propositions 3.3.17 and
3.3.16 to provide Weierstrass equation for each fibration.
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3.5.1 Construction of X3

In this section, we construct X3 as the base change of a specific rational
elliptic surface. Let R be constructed by the pencil of cubics Λ = sF + tG in P2,
where F is given by xyz = 0 and G by (x − y)(y − z)(z − x) = 0 (see Proposition
1.2.2).

P1

P2P3 ℓ1

ℓ2 ℓ3

r2 r3

r1

Q2 Q3

Q1

O

ℓ1 : x = 0 P1 = [1:0:0]
ℓ2 : y = 0 P2 = [0:1:0]
ℓ3 : z = 0 P3 = [0:0:1]
r1 : y − z = 0 Q1 = [0:1:1]
r2 : z − x = 0 Q2 = [1:0:1]
r3 : x− y = 0 Q3 = [1:1:0]

O = [1:1:1]

Figura 3 – Cubics generating Λ

The base points of Λ lie on the scheme theoretic intersection F ∩ G, and
consist of P1, P2, P3, Q1, . . . , Q6. The points Q4, Q5, Q6 are infinitely near to P1, P2, P3,
respectively, and correspond to the tangent directions of r1, r2, r3. Blowing up the
base points, we obtain the rational elliptic surface R, whose only reducible fibers are
Fa := π−1

R ([0:1]) of type IV and Fb := π−1
R ([1:0]) of type I6, i.e. the strict transforms

of F and G. The exceptional divisors H1, . . . , H6 above Q1, . . . , Q6 determine sections
of πR.

The curves in Figure 4 have self-intersections ℓ2
i = E2

i = r2
i = −2, and

H2
i = −1. By (OGUISO; SHIODA, 1991, Main Theorem), the Mordell–Weil group

of πR is MW(πR) = Z ⊕ Z/3Z.

We apply the base change by the cubic Galois cover τP1 : P1 → P1 to-
tally ramified at [0:1] and [1:0], obtaining a K3 surface with an elliptic fibration
πX : X → P1 (see Proposition 3.6.5). The fibers above the ramification points of τP1

are FX
a := π−1

X ([0:1]) of type I0, and FX
b := π−1

X ([1:0]) of type I18, and every other
fiber is irreducible (see (MIRANDA, 1989, Table VI.4.1)).

Proposition 3.5.1. Let σ be the automorphism of X induced by the base change.
Then, σ acts trivially on NS(X).
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E1

ℓ3

E2

ℓ1

E3

ℓ2

Q4

Q3

Q5
Q1

Q6

Q2

r1

r2

r3

Figura 4 – Reducible fibers of πR

Demonstração. By Proposition 3.6.12, we know that the generic fiber of πX is given
by F + t3G. Furthermore, σ acts as t 7→ ζ3t. Thus, σ preserves every section and
permutes the fibers of πX , except for FX

a and FX
b . Since every other fiber in irreducible

and σ fixes the fiber class, all that remains is describing the action of σ over FX
a and

FX
b . We start by looking at the corresponding fibers in R×P1 P1, which we denote

by F̂a and F̂b, respectively. These fibers are isomorphic to the corresponding fibers
in πR, and all their components are fixed by the induced automorphism. However,
their singular points are also singularities of R×P1 P1. In order to arrive at X and σ,
we need to blow-up these singularities and lift the automorphism to the exceptional
divisor.

Let p be a singular point of F̂b. Then, R ×P1 P1 is given locally by t = xy,
with (0, 0, 0) corresponding to p and (x, y, t) 7→ (x, y, ζ3t) the Galois automorphism
obtained by the base change. Blowing-up the origin, we have t = x1y1, where x1 = x

t

and Y1 = y
t
. The exceptional divisor at t = 0 consists of 2 rational curves given by

x1 = 0 and y1 = 0. We can extend the automorphism as (x1, y1, t) 7→ (ζ2
3c1, ζ

2
3y1, ζ3t).

Thus, this automorphism acts on each component of the exceptional divisor with
order 3, and their intersection at x1 = y1 = 0 is an isolated fixed point.

Now, let p be the singular point of F̂a. In this case, the surface R ×P1 P1 is
given locally by t = xy(x + y). Blowing up the origin we have t32 = x2

2 + x2, with
x2 = x

y
and t2 = t

y
. The exceptional divisor at y = 0 is an elliptic curve, and the

action can be extended as (x2, y, t2) 7→ (x2, y, ζ3t2). Thus, σ acts with order 3 on the
exceptional divisor, and fixes 3 points given by (0, 0, 0), (1, 0, 0) and the point at
infinity of the elliptic curve. These fixed points lie on the intersection with the strict
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transforms of the components F̂a. These components are (−1)-curves, and after their
contraction we obtain X. With this, we are able to describe the action of σ on X,
and see that σ acts trivially on NS(X).

The description of the action of σ over FX
a and FX

b shows that the fixed locus
of σ contains 6 rational curves, corresponding to the components of FX

b coming from
the I6 fiber Fb, and 9 isolated fixed points, corresponding to the 3 fixed points on FX

a

and the 6 points on the intersection of the curves of FX
b which are not on the fixed

locus. Notice that this agrees with the description of the fixed locus on (ARTEBANI;
SARTI, 2008, Proposition 3.2). Furthermore, we have the following corollary.

Corollary 3.5.2. The surface X is isomorphic to X3.

Demonstração. By the Shioda–Tate formula, ρ(X) = 20, and by Proposition 3.5.1,
σ is a non-symplectic automorphism of order 3 acting trivially on NS(X). Therefore,
by (ARTEBANI; SARTI, 2008, Proposition 5.1), X is isomorphic to X3.

Θ17 Θ1
Θ0

Θ2

Θ3

Θ4

Θ5

Θ6

Θ7

Θ8Θ9
Θ10

Θ11

Θ12

Θ13

Θ14

Θ15

Θ16

Fw1

Fw2

Σ0

Σ5

Σ4

Σ3

Σ2

Σ1

Figura 5 – Ramified fibers of πX

Figure 5 describes the fibers FX
a and FX

b of πX . The curves Θi are the com-
ponents of FX

b and Σi are the sections inherited from Hi in R. The self-intersections
of the portrayed curves are Θ2

i = Σ2
i = −2, (FX

a )2 = 0. The curves in the fixed locus
of σ are highlighted as bold, and the isolated fixed points are marked by black dots.
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3.5.2 Elliptic fibrations on X3

By Proposition 1.3.13, elliptic fibrations on X are equivalent to embeddings
U ↪→ NS(X). Then, for classes L,M ∈ NS(X) such that L2 = 0, M2 = −2 and
L ·M = 1, there is a fibration πL,M : X → P1 such that L is the fiber class, and M

the class of the zero-section. Our goal is to create divisors Li and Mi which induce
an elliptic fibrations πi : X → P1 for each fibration 10.i in Table 6. We can create
Li,Mi using only Θj’s and Σk’s as components.

Proposition 3.5.3. For i = 1, ..., 6, each pair Li,Mi in Table 10 induces an elliptic
fibration πi : X → P1 in the same J1-class as fibration 10.i in Table 6.

No. Li Mi

1 2Θ16 + 4Θ17 + 6Θ0 + 3Σ0 + 5Θ1 + 4Θ2 + 3Θ3 + 2Θ4 + Θ5 Θ6
2 Θ17 + Σ0 + 2∑12

j=0 Θj + Σ4 + Θ13 Θ16
3 Θ15 + 2Θ16 + 3Θ17 + 4Θ0 + 2Σ0 + 3Θ1 + 2Θ2 + Θ3 Θ4
4 ∑17

j=0 Θj Σ0
5 3Θ0 + 2Θ1 + 2Θ17 + 2Σ0 + Θ2 + Θ16 + Σ3 Θ3
6 Θ17 + Σ0 + 2Θ0 + 2Θ1 + 2Θ2 + 2Θ3 + Σ1 + Θ4 Θ5

Tabela 10 – Divisors inducing elliptic fibrations on X3

Demonstração. For each i, the divisor Li lies in the fiber class of πi. By construction,
this divisor represents a reducible fiber of πi, and its root type as a lattice must
appear in the ADE-type of the fibration. For example, L1 is a fiber of type II∗,
which induces an E8 in the ADE-type of π1. The only fibration with this ADE-type
possible in X by Table 6 is 10.1. Equivalently, L2 induces a D16, L3 an E7, L4 an
A17, L5 an E6 and L6 a D7. These root lattices are all unique to the ADE-types of
their respective fibrations.

In order to apply Theorem 3.3.15, we need to describe X̃, given by the blow-up
of the isolated fixed points of σ, and R̃, the quotient of X̃ by the lifting σ̃ of σ. The
surface X̃ has 9 new components given by the exceptional curves of the blow-up
η : X̃ → X. We denote the 6 curves above the intersection points of Θ3i+1 and Θ3i+2

by Θ3i+1,3i+2 (for i = 0, ..., 5), and the 3 curves above the intersection of Σi and Σi+3

by Σi,i+3 (for i = 0, 1, 2). For each curve C in X, C̃ denotes the strict transform
of C by η. The self intersections of each component are given by Θ̃2

i = −2 if i ≡ 0
mod 3, Θ̃2

i = −3 if i ̸≡ 0 mod 3, Σ̃2
i = −3, Θ2

i,i+1 = Σ2
i,i+3 = −1 and F̃ 2

a = −2. The
automorphism σ̃ of X̃ maintains the action of σ on each strict transform and fixes
the exceptional curves.
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Figura 6 – Components of X̃

Let R̃ = X̃/σ̃, and τ̃ : X̃ → R̃ the quotient map. For each component above,
we calculate the pushforward by τ̃ given as follows.

τ̃∗Θ̃0 = Ẽ1 τ̃∗Θ̃9 = ℓ̃1 τ̃∗Σ̃0 = 3H̃4 τ̃∗Θ1,2 = R1

τ̃∗Θ̃1 = 3S1 τ̃∗Θ̃10 = 3S7 τ̃∗Σ̃1 = 3H̃3 τ̃∗Θ4,5 = R2

τ̃∗Θ̃2 = 3S2 τ̃∗Θ̃11 = 3S8 τ̃∗Σ̃2 = 3H̃5 τ̃∗Θ7,8 = R3

τ̃∗Θ̃3 = ℓ̃3 τ̃∗Θ̃12 = Ẽ3 τ̃∗Σ̃3 = 3H̃1 τ̃∗Θ10,11 = R4

τ̃∗Θ̃4 = 3S3 τ̃∗Θ̃13 = 3S9 τ̃∗Σ̃4 = 3H̃6 τ̃∗Θ13,14 = R5

τ̃∗Θ̃5 = 3S4 τ̃∗Θ̃14 = 3S10 τ̃∗Σ̃5 = 3H̃2 τ̃∗Θ16,17 = R6

τ̃∗Θ̃6 = Ẽ2 τ̃∗Θ̃15 = ℓ̃2 τ̃∗Σ0,3 = r̃1 τ̃∗F̃a = 3EO
τ̃∗Θ̃7 = 3S5 τ̃∗Θ̃16 = 3S11 τ̃∗Σ1,4 = r̃3

τ̃∗Θ̃8 = 3S6 τ̃∗Θ̃17 = 3S12 τ̃∗Σ2,5 = r̃2

The intersection pattern between distinct components is maintained, but the
self-intersections are changed. The pushforwards of curves fixed by σ̃ have the self-
intersection multiplied by 3. On the other hand, the pushforward of curves preserved
by σ̃ (i.e., σ̃ acts on the curve with order 3) have the self intersection divided by
3. We obtain Ẽ2

i = ℓ̃2
i = −6, R2

i = r̃2
i = −3, and S2

i = H̃2
i = E2

O = −1. Notice that
even though g(F̃a) = 1, since σ̃ fixes 3 distinct points in F̃a, by Riemann–Hurwitz
we have g(EO) = 0.
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If we contract the (−1)-curves S1, ..., S12 and EO, and subsequently contract
the curves R1, ..., R6, we obtain a birational morphism ε : R̃ → R, with ε∗Ẽi =
Ei, ε∗ℓ̃i = ℓi, ε∗H̃i = Hi and ε∗r̃i = ri. Since the canonical divisor of R is equal to
−F in NS(R), we can use ε to calculate the canonical divisor of R̃

KR̃ = ∑6
i=1 Ri + 2∑12

i=1 Si −∑3
i=1 r̃i − 2EO.

Theorem 3.5.4. Let π1, . . . , π6 be the elliptic fibrations on (X, σ) presented in
Proposition 3.5.3. Then, π1 and π5 are of type 1 and π2, π3, π4, π6 are of type 2, with
respect to σ.

Demonstração. For every Li in Table 10, we first apply the pullback by η, then
the pushforward by τ̃ . The divisor τ̃∗(η∗Li) induces a linear system in R̃, which by
Theorem 3.3.15 can be used to classify πi with respect to the action of σ. If πi is of
type 1, then τ̃∗(η∗Li) = 3L̃i, where L̃i is a generalized conic bundle class in R̃, so
τ̃∗(η∗Li) ·KR̃ = 3L̃i ·KR̃ = 3 · (−2) = −6. If πi is of type 2, then τ̃∗(η∗Li) = L̃i is a
splitting genus 1 pencil, and L̃i ·KR̃ = 0. Since σ acts trivially on NS(X), there are
no fibrations of type 3. The explicit calculations of τ̃∗(η∗Li) and its intersection with
KR̃ are presented in Table 11.

No. τ̃∗(η∗Li) τ̃∗(η∗Li) ·KR̃

1 3L̃1 = 3(2S11 + 2R6 + 4S12 + 2Ẽ1 + 3H̃4 + r̃1
+5S1 + 3R1 + 4S2 + ℓ̃3 + 2S3 + R2 + S4)

−6

2 L̃2 = R6 + 3S12 + r̃1 + 3H̃4 + 2Ẽ1 + 6S1 + 4R1
+6S2 + 2ℓ̃3 + 6S3 + 4R2 + 6S4 + 2Ẽ2
+6S5 + 4R3 + 6S6 + 2ℓ̃1 + 6S7 + 4R4
+6S8 + 2Ẽ3 + 3H̃6 + r̃3 + 3S9 + R5

0

3 L̃3 = ℓ̃2 + 6S11 + 5R6 + 9S12 + 4Ẽ1 + 6H̃4
+2r̃1 + 9S1 + 5R1 + 6S2 + ℓ̃3

0

4 L̃4 =
∑3
i=1 Ẽi +

∑3
i=1 ℓ̃i + 3

∑12
i=1 Si + 2

∑6
i=1 R̃i 0

5 3L̃5 = 3(Ẽ1 + 2S1 + R1 + S2 + 2S12
+R6 + S11 + 2H̃4 + r̃1 + H̃1)

−6

6 L̃6 = R6 + 3S12 + r̃1 + 3H̃4 + 2Ẽ1 + 6S1 + 4R1
+6S2 + 2ℓ̃3 + 3H̃3 + r̃3 + 3S3 + R2

0

Tabela 11 – Divisors induced in R̃
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3.5.3 Weierstrass Equations of the elliptic fibrations

In this section, we apply the method described in Section 3.3.4 to find
Weierstrass equations for each πi in Table 10. Let Γi be the pencils of curves in
P2 induced by each πi. We describe the geometry of Γi by applying the following
substitutions for each L̃i in Table 11, where h̃ is the pullback of the line class
h ∈ Pic(P2) to Pic(R̃).

l̃1 = h̃ − Ẽ2 − Ẽ3 − H̃1 − H̃5 − H̃6 − R2 − 2R3 − 2R4 − R5

− S3 − 2S4 − 3S5 − 3S6 − 3S7 − 3S8 − 2S9 − S10,

l̃2 = h̃ − Ẽ1 − Ẽ3 − H̃2 − H̃4 − H̃6 − R1 − R4 − 2R5 − 2R6

− 2S1 − S2 − S7 − 2S8 − 3S9 − 3S10 − 3S11 − 3S12,

l̃3 = h̃ − Ẽ1 − Ẽ2 − H̃3 − H̃4 − H̃5 − 2R1 − 2R2 − R3 − R6

− 3S1 − 3S2 − 3S3 − 3S4 − 2S5 − S6 − S11 − 2S12,

r̃1 = h̃ − EO − Ẽ1 − H̃1 − 2H̃4 − R1 − R6 − 2S1 − S2 − S11 − 2S12,

r̃2 = h̃ − EO − Ẽ2 − H̃2 − 2H̃5 − R2 − R3 − S3 − 2S4 − 2S5 − S6,

r̃3 = h̃ − EO − Ẽ3 − H̃3 − 2H̃6 − R4 − R5 − S7 − 2S8 − 2S9 − S10.

As an example, applying these substitutions to L̃1 we obtain L̃1 = 2h̃− EO − Ẽ2 −
H̃1 − H̃3 − H̃5 −R2 −R3 −S3 − 2S4 − 2S5 −S6. The component 2h̃ indicates that the
linear system Γ1 in P2 is composed of conics. The negative components EO, E2, H1

and H3 indicate that the conics in Γ1 pass through the points O,P2, Q1 and Q3 in P2,
and the remaining components come from the pullback of the former. Consequently,
Γ1 is the pencil of conics through O,P2, Q1, Q3. We can do the same for the rest of
the divisors L̃i (see Table 12).

The description of these systems allows us to use Propositions 3.3.17 and
3.3.16 and find Weierstrass equations for each fibration in Proposition 10.

Proposition 3.5.5. The elliptic fibrations π1 and π5 are given by the following
equations in Weierstrass form:

π1 : y2 − 2v4−4v3

α(v) y = x3 + v5

β(v) ,

π5 : y2 − v2−2v+1
v y = x3,
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No. L̃i Γi

1 L̃1 = 2h̃ − EO − Ẽ2 − H̃1
−H̃3 − H̃5 − R2 − R3
−S3 − 2S4 − 2S5 − S6

Conics through
P2, Q1, Q3, O.

2 L̃2 = 6h̃ − 2EO − Ẽ1 − 2Ẽ2 − Ẽ3
−3H̃1 − 3H̃3 − H̃4 − 4H̃5 − H̃6
−R1 − 2R2 − 2R3 − R4 − 2R5
−2R6 − 2S1 − S2 − 2S3 − 4S4
−4S5 − 2S6 − S7 − 2S8 − 3S9

−3S10 − 3S11 − 3S12

Sextics through
Q1, Q3 (multiplicity 3),

P2 (tacnode tangent to r2),
O (multiplicity 2),

P1, P3 (tangent to l2).

3 L̃3 = 4h̃ − 2EO − Ẽ2 − Ẽ3
−2H̃1 − H̃2 − H̃3 − H̃5 − H̃6

−2R2 − R3 − R4 − 2R5
−3S3 − 3S4 − 2S5 − S6
−S7 − 2S8 − 3S9 − 3S10

Quartics through
O,Q1 (multiplicity 2),

P2, P3, Q2, Q3 (multiplicity 1).

4 L̃4 = 3h̃ − Ẽ1 − Ẽ2 − Ẽ3 − H̃1 − H̃2
−H̃3 − 2H̃4 − 2H̃5 − 2H̃6 − R1 − R2

−R3 − R4 − R5 − R6 − 2S1 − S2
−S3 − 2S4 − 2S5 − S6 − S7

−2S8 − 2S9 − S10 − S11 − 2S12

Cubics through Q1, Q2, Q3
P1 (tangent to r1),
P2 (tangent to r2),
P3 (tangent to r3).

5 L̃5 = h̃ − EO Lines through O.

6 L̃6 = 4h̃ − 2EO − Ẽ1 − 2Ẽ2 − Ẽ3
−H̃1 − H̃4 − 2H̃5 − 2H̃6 − R1
−2R2 − 2R3 − R4 − R5 − 2R6

−2S1 − S2 − 3S3 − 6S4 − 4S5 − 2S6
−S7 − 2S8 − 2S9 − S10 − 2S11 − S12

Quartics through
O,P2 (multiplicity 2),
P1, Q1, (multiplicity 1),
P3 (tangent to r3).

Tabela 12 – Linear systems Γi

where,

α(v) = v13−16v12+120v11−554v10+1742v9−3903v8+6337v7

−7435v6+6171v5−3470v4+1229v3−246v2+25v−1,

β(v) = v22−27v21+351v20−2915v19+17310v18−77975v17+275920v16−783765v15+1811095v14

−3429800v13+5338045v12−6819500v11+7115140v10−6008210v9+4051240v8−2141208v7

+865711v6−259643v5+55665v4−8165v3+771v2−42v+1.

Demonstração. By Proposition 3.3.16, we need to calculate the restriction of πR̃ : R̃ →
P1 to each Di,v in Λi, which we write as fi,v : Di,v → P1. To do this, we determine, for
each Ci,v ⊂ P2 induced by Di,v in Γi, a map ρi,v : P1 → P2 such that ρi,v(P1) = Ci,v.
We can write these maps as follows.

ρ1,v([u1:u2]) = [u2
1 − vu1u2 : u2

1 − vu2
2 : u1u2 − vu2

2],

ρ5,v([u1:u2]) = [u1 − vu2 : u1 − vu1 : u2 − vu2].
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By the construction of R as a pencil of cubics, the elliptic fibration πR̃ is equivalent
in an open set of R̃ to blowing down to P2 and composing with the rational map
φ([x:y:z]) = [xyz : (x−y)(y−z)(z−x)]. Composing each ρi,v with φ, we obtain maps
φ ◦ ρi,v : P1 ∼= Ci,v 99K P1, which we write as

φ ◦ ρ5,v([u1:u2]) = [(u1 − vu2)2(u2
1 − vu2

2)u1u2 : v(u1 − u2)3(u1 − vu2)u1u2],

φ ◦ ρ1,v([u1:u2]) = [(v − 1)(u1 − vu2)u1u2 : v(u1 − u2)3].

The maps f1,v and f5,v are the resolutions of indeterminacy of the maps above. The
coordinates in φ ◦ ρ5,v have no common factors, so f5,v = φ ◦ ρ5,v. On the other hand,
the coordinates of φ ◦ ρ1,v have a common factor of (u1 − vu2)u1u2, so we have

f1,v([u1:u2]) = [(u1 − vu2)(u2
1 − vu2

2) : v(u1 − u2)3].

The equations for the fibrations are given by fi,v([u1:u2]) = τP1([s:t]) in P1 × P1 over
k(v), thus we have

π1 : s3v(u1 − u2)3 = t3(u1 − vu2)(u2
1 − vu2

2),

π5 : s3v(u1 − u2)3 = (v − 1)t3(u1 − vu2)u1u2.

Notice that the both equations admit a k(v)-point, namely ([v:1], [0:1]) for π1 and
([1:0], [0:1]) for π5. Thus, we can transform both equations to Weierstrass form,
obtaining the result.

Proposition 3.5.6. The elliptic fibrations π2, π3 and π6 are given by the following
equations in Weierstrass form:

π2 : y2 + 2xy = x3 − 3t3+1
t3 x2 + x,

π3 : y2 = x3 + t3x2 − t3x,

π6 : y2 − t3xy + t6y = x3 − t3x2.

Demonstração. By Proposition 3.3.17, for each πi, we need to find Fi,a and Fi,b the
fibers above the ramification points of the base change, and then calculate the curves
Ci,a and Ci,b they induce in Γi. Notice that the ADE-types of each fibration determines
the Kodaira types of the ramified fibers, as noted in Remark 3.3.18. We can take
Fi,a to be the divisor Li (see Table 10). Then, Fi,b must be disjointed from Fi,a and
the same Kodaira type of the ramified fiber. For each πi, we can choose as follows:

F2,b = Θ15 + Σ5 + Σ′,

F3,b = Θ5 + Σ2 + 2(∑12
i=6 Θi) + Θ13 + Σ4,

F6,b = Σ2 +∑15
i=6 Θi + Σ5.
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Here, Σ′ is a section of πX intersecting FX
b in the component Θ15 and FX

a

in the same point as Σ5. Next, we calculate τ̃∗(η∗Fi,a) and τ̃∗(η∗Fi,b) in Pic(R̃).
The components coming from curves in P2 will determine Ci,a and Ci,b. For example,
τ̃∗(η∗F3,a) = L̃3 = ℓ̃2+2r̃1+ℓ̃3+(4Ẽ1+6H̃4+9R1+5R6+9S1+6S2+6S2+6S11+9S12).
Then, the induced curve F3 is given by ℓ2 · r2

1 · ℓ2
3 = x(y − z)2z = 0.

This process is straightforward for every Fi,a, as well as for F3,b and F6,b. For
F2,b, we first have to calculate τ̃∗(η∗(Σ′)). Since Σ′ passes through the same fixed
point of σ as Σ5, it follows that η∗(Σ′) = Σ̃′ + Σ2,5, and Σ̃′2 = −3. As σ̃ preserves Σ̃′,
we calculate τ̃∗(η∗(Σ′)) = 3H ′ + r̃2, where H ′ = τ̃(Σ̃′) corresponds with the section of
R̃ coming from the line x+ z = y in P2 passing through Q1 and Q2, and H

′2 = −1.
Consequently, we have τ̃∗(η∗F2,b) = ℓ̃2 + 3H̃2 + 2r̃2 + 3H ′.

We arrive at the following equations for π2, π3 and π6 :

π2 : x2z2(x− y)(y − z) + t3y(z − x)2(x− y + z)3 = 0,

π3 : xy(x− y)2 + t3z2(z − x)(y − z) = 0,

π6 : xz(y − z)2 + t3y2(z − x)(x− y) = 0.

All three equations admit a k(t)-point, namely [0:0:1] for π2, [1:0:0] for π3 and [0:0:1]
for π6. Transforming the equations to Weierstrass form, we obtain the result.

Remark 3.5.7. The action of σ can be given explicitly in the Weierstrass equations
in the previous propositions. For the equations in Proposition 3.5.6, σ is given by
(x, y, t) 7→ (x, y, ζ3t), and for those in Proposition 3.5.5, σ is (x, y, v) 7→ (ζ3x, y, v).

3.6 Classification of fibrations with respect to a non-symplectic
automorphism

In this section, we adapt results from Section 3.3 to K3 surfaces X with a
non-symplectic automorphism σ of order p > 3. Recall that by Theorem 1.3.8, p is
at most equal to 19. We work under the following further assumption.

Assumption 3.6.1. We assume that the automorphism σ acts trivially on NS(X).

Under this assumption, by Remark 3.2.11, X does not admit any elliptic
fibrations of type 3 with respect to σ. Furthermore, by Proposition 3.3.1, (X, σ) also
does not admit fibrations of type 1. Consequently, in this section we deal exclusively
with elliptic fibrations of type 2.
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3.6.1 Base changes of rational elliptic surfaces

In this section, we perform base changes of rational elliptic surfaces to cons-
truct pairs (X, σ), where X is a K3 surface and σ a non-symplectic automorphism of
prime order p > 3. Let π : R → P1 be a rational elliptic surface and πX : X → P1 the
elliptic fibration obtained after the base change by a Galois covering τP1 : P1 → P1 of
degree p. Take v, v′ ∈ P1 such that τP1(v′) = v. We denote their ramification index
by r(v′|v) and their fibers by Fv = π−1(v) and FX

v′ = π−1
X (v′).

We want to know when X is a K3 surface. Since by construction X has
an elliptic fibration with basis P1, by Proposition 1.3.14 this is true if and only if
e(X) = 24. We use the following definition.

Definition 3.6.2. We define the function C(v′|v) as follows.

C(v′|v) := r(v′|v) · e(Fv) − e(FX
v′ ).

By the Riemann–Hurwitz Theorem, τP1 is ramified in 2 distinct points a, b ∈ P1.
Take a′, b′ such that τP1(a′) = a and τP1(b′) = b.

Lemma 3.6.3. The Euler number of X is given by

e(X) = 12p− C(a′|a) − C(b′|b).

Demonstração. By Proposition 1.1.13, we can write

e(X) =
∑
v∈P1

e(FX
v ) =

∑
v∈P1

∑
τP1 (v′)=v

e(FX
v′ ). (3.1)

By Definition 3.6.2,
e(FX

v′ ) = r(v′|v) · e(Fv) − C(v′|v). (3.2)

Substituting Equation 3.2 into Equation 3.1, we obtain

e(X) =
∑
v∈P1

e(Fv)
 ∑
τP1 (v′)=v

r(v′|v)
−

∑
v∈P1

∑
τP1 (v′)=v

C(v′|v) (3.3)

Since τP1 is a covering of degree p, we know ∑
τP1 (v′)=v r(v′|v) = p. Applying Proposi-

tions 1.1.13 and 1.2.3, we know that ∑v∈P1 e(Fv) = 12. Furthermore, for v′ ̸= a′, b′,
we have r(v′|v) = 1 and by Proposition 1.1.23 e(FX

v′ ) = e(Fv). Thus, C(v′|v) = 0,
and we obtain the result by substituting in Equation 3.3.

In the following proposition, we present a formula for C(v′|v) in terms of the
Kodaira type of Fv and the ramification index r(v′|v).
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Fv C(v′|v) Fv C(v′|v)

In 0 I∗
n 12

⌊
m

2

⌋

II 12
⌊
m

6

⌋
II∗ 12

(
m−

⌊
m

6

⌋
−
⌈
m− 6⌊m6 ⌋

6

⌉)

III 12
⌊
m

4

⌋
III∗ 12

(
m−

⌊
m

4

⌋
−
⌈
m− 4⌊m4 ⌋

4

⌉)

IV 12
⌊
m

3

⌋
IV ∗ 12

(
m−

⌊
m

3

⌋
−
⌈
m− 3⌊m3 ⌋

3

⌉)

Tabela 13 – Values of C(v′|v)

Proposition 3.6.4. Let r(v′|v) = m. The value of C(v′|v) is determined by the
formulas in Table 13.

Demonstração. Notice that the Kodaira type of FX
v′ is known by 1.1.23, so we just

need to check if me(Fv) − C(v′|v) = e(FX
v′ ) for each possible Kodaira type of Fv. We

present the proof for Fv of type IV or IV ∗; the other cases are analogous.

Write m = 3
⌊
m

3

⌋
+ r, with r = 0, 1 or 2. If Fv is of type IV , then e(Fv) = 4,

and we have

me(Fv) − C(v′|v) = 4(3
⌊
m

3

⌋
+ r) − 12

⌊
m

3

⌋
= 12

⌊
m

3

⌋
+ 4r − 12

⌊
m

3

⌋

= 4r =


0 if m ≡ 0 mod 3

4 if m ≡ 1 mod 3

8 if m ≡ 2 mod 3.

By Proposition 1.1.23, FX
v′ is of type I0 if m ≡ 0 mod 3, IV if m ≡ 1 mod 3

and IV ∗ if m ≡ 2 mod 3. Thus, the result is compatible with the values of e(FX
v′ ).

Write r = m− 3
⌊
m

3

⌋
. We have

⌈
m− 3⌊m3 ⌋

3

⌉
=
⌈
r

3

⌉
=

0 if m ≡ 0 mod 3

1 otherwise.

If Fv is of type IV ∗, then e(Fv) = 8, and we write
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me(Fv) − C(v′|v) =

8m− 12
(
m−

⌊
m

3

⌋
−
⌈
m− 3⌊m3 ⌋

3

⌉)
=

12
⌊
m

3

⌋
+ 12

⌈
r

3

⌉
− 4m =

12
⌊
m

3

⌋
+ 12

⌈
r

3

⌉
− 4(3

⌊
m

3

⌋
+ r) =

12
⌈
r

3

⌉
− 4r =


0 if m ≡ 0 mod 3

12 − 4 = 8 if m ≡ 1 mod 3

12 − 8 = 4 if m ≡ 2 mod 3.

This result is also compatible with the expected values for e(F ′
v′).

Proposition 3.6.5. Let π : R → P1 be a rational elliptic surface and τP1 : P1 → P1

a Galois cover of prime degree p ramified at a, b ∈ P1. Let πX : X → P1 be the base
change of π : R → P1 by τP1. Then, X is a K3 surface if and only if the fibers Fa
and Fb have the Kodaira types described in Table 14, up to a permutation.

p Fa Fb
5 III∗, IV ∗ In, II

I∗
n III, IV

7 II∗, III∗ In
IV ∗ II, III
I∗
n IV

11 II∗ In
III∗ II
IV ∗ III

13 III∗ II
17 IV ∗ III
19 III∗ II

Tabela 14 – Ramified fibers when X is a K3 surface

Demonstração. By Proposition 1.3.14, X is K3 if and only if e(X) = 24, and by
Lemma 3.6.3, e(X) = 12p− C(a′|a) − C(b′|b). Thus, X is a K3 surface if and only if
C(a′|a) + C(b′|b) = 12(p − 2). We can calculate C(a′|a) + C(b′|b) using Proposition
3.6.4. We note that if p = 13 and Fa and Fb both of type IV ∗, then C(a′|a)+C(b′|b) =
132 = 12 · 11, but this is not possible in rational elliptic surfaces by Corollary 1.2.4.
This brings us to the result.
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Remark 3.6.6. Let X be a K3 surface and πX : X → P1 be the base change of
a rational elliptic surface by a Galois map τP1 : P1 → P1 of prime degree p. The
map τP1 induces an automorphism σπ ∈ Aut(P1), which can in turn be lifted to an
automorphism σ ∈ Aut(X). The quotient of X by σ is a rational surface, so by
Theorem 1.3.12, σ is non-symplectic. By construction, πX is an elliptic fibration of
type 2 on (X, σ). Notice that in general (X, σ) does not satisfy Assumption 3.6.1, i.e.
σ may act non-trivially on NS(X). This always happens when πX has an irreducible
fiber distinct from the ramified fibers FX

a′ , FX
b′ .

3.6.2 Elliptic fibrations on (X, σ)

Let X be a K3 surface and σ ∈ Aut(X) a non-symplectic automorphism of
order p > 3 under Assumption 3.6.1. In what follows, we use Proposition 3.6.5 to
describe the configuration of fibers of an elliptic fibration π : X → P1. Recall that π
is of type 2 with respect to σ.

By Theorem 1.3.12, the quotient X/σ is rational, but, as in the case of p = 3,
in general it is not smooth. By Proposition 1.3.10, the local action of σ around x

can be linearized as Ap,t, and a fixed point x ∈ X is isolated if and only if t ≥ 0.
In this case, the point τ(x) ∈ X/σ is a singularity of type 1

p
(1, b) for some b such

that 0 < b < p (see (REID, 2003)). Let φ : R̃ → X/σ be the resolution of all the
singularities of X/σ.

Proposition 3.6.7. Let π : X → P1 be an elliptic fibration of type 2 on (X, σ).
Then, π induces an elliptic fibration πR̃ : R̃ → P1.

Demonstração. Let σπ be the automorphism of P1 induced by σ and π. Choose
v1 ∈ P1 such that v1 is not fixed by σπ and its respective fiber Fv1 is smooth.
Then, the orbit of Fv1 by σ consists of p distinct smooth fibers denoted by Fvi

for
i = 1, . . . , p, where vi = σi−1

π (v1). In particular, none of the fibers Fvi
contain an

isolated fixed point of σ.

Let D = τ(Fv1) ⊂ X/σ. Then, σ defines a unramified cover of degree p of D
given by p disjointed smooth curves of genus 1. Thus D is a smooth curve and by
the Riemann–Hurwitz Theorem it also has genus 1. Furthermore, D2 = τ∗(Fv1) ·D =
Fv1 · τ ∗(D) = Fv1 · (Fv1 + . . .+ Fvp) = 0. Finally, let D̃ = φ−1(D) ⊂ R̃. Notice that
D does not contain the singularities resolved by φ, since the isolated fixed points of
σ are not in Fvi

. Thus, D̃ is also a smooth genus 1 curve with D̃2 = 0, and the linear
system |D| induces a fibration of genus 1 curves πR̃ : R̃ → P1.
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It remains to see that πR̃ admits a section. Let Σ0 be the zero-section of π.
Then, let C = τ(Σ0) and C̃ be the strict transform of C by φ. We can calculate
D · C = τ∗(Fv1) · C = Fv1 · τ ∗(C) = Fv1 · Σ0 = 1. Since D ∩ C is not in the center of
the resolution φ, D̃ · C̃ = 1. Therefore, πR̃ : R̃ → P1 is an elliptic fibration with D̃ as
its fiber class and C̃ as its zero-section.

Assume πR̃ : R̃ → P1 is not relatively minimal. Then, there is a birational
morphism ηR : R̃ → R such that R is a smooth rational surface endowed with a
relatively minimal elliptic fibration πR : R → P1 such that πR̃ = ηR ◦ πR.

Proposition 3.6.8. Let π : X → P1 be an elliptic fibration of type 2 on (X, σ).
Then, there is a map τπ : P1 → P1 such that π is the base change of πR : R → P1 by
τπ, and σ is the induced automorphism.

Demonstração. Let σπ be the automorphism of P1 induced by σ and π and τπ : P1 →
P1 the quotient of P1 by the action of σπ.

Let a′, b′ be the ramification points of τπ, and τπ(a′) = a, τπ(b′) = b. Let
U = π−1(P1 \ {a′, b′}) ⊂ X, Ṽ = π−1

R̃
(P1 \ {a, b}) and V = π−1

R (P1 \ {a, b}). Since
the isolated fixed points of σ lie on the fibers FX

a′ , FX
b′ of π, the exceptional curves

of φ : R̃ → X/σ lie on F R̃
a and F R̃

b . Thus, we have an isomorphism τ(U) ∼= Ṽ . For
τπ(v′) = v and v′ ̸= a′, b′, the fibers FX

v′ and F R̃
v are isomorphic. Since X is a K3

surface, π is relatively minimal, any (−1)-components of fibers of πR̃ lie on F R̃
a , F

R̃
b .

Thus Ṽ ∼= V .

Thus, taking fiber product of πR : R → P1 by τπ : P1 → P1, we obtain a
fibration which agrees with π over an open set. After resolving singularities and
contracting (−1)-curves, we obtain a minimal K3 surface which is birational to X.
Since X is minimal, they are isomorphic.

Remark 3.6.9. Recall that in the case of order 3, Propositions 3.3.9 and 3.3.10
have the hypothesis that σ preserves the zero-section of π. Since for order p > 3 we
are working under Assumption 3.6.1, this is automatically true for (X, σ).

We can use Proposition 3.6.5 to prove the following.

Proposition 3.6.10. Let π : X → P1 be an elliptic fibration of type 2 on (X, σ).
Then, σ fixes two fibers Fa′ and Fb′, and permutes the remaining fibers. The Kodaira
types of Fa′ and Fb′ are described in Table 15 up to a permutation, and the other
fibers are all irreducible (i.e. of Kodaira type I0, I1 or II).
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p FX
a′ FX

b′

5 III∗, IV I5n, II
∗

I∗
5n III, IV ∗

7 II∗, III I7n
IV ∗ II, III∗

I∗
7n IV

11 II I11n
III II∗

IV III∗

13 III∗ II
17 IV III
19 III II

Tabela 15 – Types of fixed fibers in fibrations of type 2

Demonstração. By Proposition 3.6.8, π : X → P1 is a base change of a rational
elliptic surface πR : R → P1 by a map τ : P1 → P1 of degree p. By Proposition 3.6.5,
we know the Kodaira types of fibers of πR. Thus, we can use Proposition 1.1.23 to
determine the fibers of π.

Let πX : X → P1 be an elliptic fibration on (X, σ), and πR̃ : R̃ → P1 be
elliptic fibration it induces on resolution of the quotient X/σ. Any elliptic fibration
π : X → P1 (possibly distinct from πX) induces a pencil of curves Λ on R̃. We can
determine Λ by pushing forward the linear system |F | of the fibers of π by the quotient
τ : X → X/σ, and then applying the pullback by the resolution φ : R̃ → X/σ.

Proposition 3.6.11. The linear system Λ induced by π : X → P1 is a splitting genus
1 pencil of R̃.

Demonstração. Suppose π is of type 2. By Proposition 3.6.7, we know that π induces
an elliptic fibration πR̃. Thus, Λ consists of the system {F̃v}v∈P1 , where F̃v = π−1

R̃
(v).

Consequently, we have F̃ 2
v = 0 and for all but finitely many v ∈ P1, g(F̃v) = 1. By

the adjunction formula, F̃v ·KR̃ = 0. Therefore, Λ is a splitting genus 1 pencil.

Let ηR : R̃ → R be the contraction of the (−1)-components on fibers of
πR̃ : R̃ → P1. Then, R is a smooth rational surface with a relatively minimal elliptic
fibration πR : R → P1, and by (MIRANDA, 1989, Lemma IV.1.2), there is a birational
map η : R → P2.

As a consequence, for any fibration π : X → P1 distinct from πX , the pencil
Λ induces another pencil Γ on P2 after pushing forward by ηR and η. Since by
Proposition 3.6.11 Λ is a genus 1 pencil, the same is true for Γ. We use Γ to deduce
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an equation for the generic fiber of π. Recall that by Proposition 3.6.8, π is the base
change of a rational elliptic surface by a Galois covering τπ : P1 → P1 of degree p.

Proposition 3.6.12. Let Fa, Fb be the fibers above the ramification points of τπ,
and Ca, Cb the induced curves in Γ. Then, we can write the generic fiber of π by the
following equation

π : Ca(x, y, z) + tpCb(x, y, z) = 0.

Demonstração. The linear system Γ is a pencil of genus 1 curves in P2 generated by Ca
and Cb. Let π′ : R̃ → P1 be the elliptic fibration on R̃ induced by Λ. Then, for all but
finitely many t ∈ P1, the fiber Ft = (π′)−1(t) is isomorphic to Ca(x, y, z)+tCb(x, y, z) =
0. By a change of coordinates, we can suppose that τπ is given by the map t 7→ tp.
Thus, applying the base change by τπ, we obtain the equation for the generic fiber of
π.
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Conclusão

In the last part of this thesis, we present further questions and topics of
future research that follow from the content of the two main chapters.

Chapter 2. There are different ways of generalizing Nagao’s conjecture
to the ranks of Jacobian varieties of hyperelliptic curves over k(T ) (see (WONG,
2001), (HINDRY; PACHECO, 2005), (HAMMONDS et al., 2019)). Specifically, in
(HAMMONDS et al., 2019) these formulas were used to determine the ranks for
specific families of hyperelliptic curves.

Let χ be a hyperelliptic curve over k(T ) given by y2 = f(x, T ), where
degT (f) ≤ 2 and degx(f) ≥ 5. The Kodaira–Néron model of χ is a smooth projective
surface X endowed with a conic bundle φ : X → P1 and a fibration π : X → P1 in
curves of genus g > 1. Is there a way to use these geometric structures to reinterpret
and generalize the results of (HAMMONDS et al., 2019)?

Chapter 3. Let X be a K3 surface and σ ∈ Aut(X) a non-symplectic
automorphism. In Chapter 3, we add several conditions to the pair (X, σ) to apply
our method. The natural next step is to figure out which conditions can be relaxed.

1. Propositions 3.3.9, 3.3.10 and 3.3.12 require the hypothesis that σ preserves
the zero-section of π : X → P1. If this is not true, then π determines a genus 1
fibration on the rational surface R̃ (i.e. an elliptic fibration without section).
Rational genus 1 fibrations are constructed as the resolution of a Halphen pencil
on P2 ((COSSEC; DOLGACHEV, 1989, Theorem 5.6.1)). Can this construction
be used to obtain equations for the generic fibers of elliptic fibrations on X?

2. The results of Sections 3.3.3 and 3.3.4 rely on Assumption 3.3.14 that X
admits an elliptic fibration of type 2. By Proposition 3.2.13 this is not true
for pairs (X, σ) where σ fixes a curve of genus g ≥ 2. For K3 surfaces with
a non-symplectic involution ι, these cases were studied in (GARBAGNATI;
SALGADO, 2020) when ι also fixes a rational curve, and in (COMPARIN et
al., 2023) when ι only fixes one curve of genus g ≥ 2. What can be said for
order 3?
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