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Resumo

Esta tese consiste de 3 capitulos. O primeiro capitulo lida com a introducao da teoria

principal aplicada nos capitulos subsequentes.

O Capitulo 1 introduz conceitos basicos na teoria de superficies elipticas, como
sua defini¢do, a correspondéncia com curvas elipticas sobre corpos de fungoes e a
classificacao de fibras singulares. Além disso, resultados especificos para superficies

elipticas racionais ou K3s sao apresentados.

No Capitulo 2, estudamos o posto de uma curva eliptica £, definida sobre o corpo
de fungoes k(T'), que é dada por uma equagao de Weierstrass com coeficientes de
grau no maximo 2. Isto é feito estudando a fibragdo em conicas e a fibragao eliptica

induzidas em seu modelo de Kodaira—Néron R.

No Capitulo 3, estudamos superficies K3 X com um automorfismo nao-simplético
o € Aut(X) de ordem prima. Classificamos fibragoes elipticas distintas de X com
respeito a acao de o em suas respectivas fibras. Cada tipo de fibragao eliptica é
relacionado a um sistema linear na resolucao minima do quociente R = X /o. Quando
a agao de o no grupo de Néron—Severi de X fixa a classe da fibra de uma fibracao
eliptica 7, este método determina quais tipos de Kodaira sdo admissiveis como suas

fibras redutiveis. Além disso, conseguios determinar equacoes para sua fibra genérica.

Palavras-chaves: Superficies elipticas, Superficies K3.






Abstract

This thesis consists of 3 chapters. The first chapter deals with introducing the main

theory used in the subsequent chapters.

Chapter 1 introduces basic concepts in the theory of elliptic surfaces, such as its
main definition, the correspondence with elliptic curves over function fields and the
classification of distinct fiber types. Furthermore, specific results on rational and K3

elliptic surfaces are presented.

In Chapter 2, we study the rank of an elliptic curve &, defined over the function
field k(T"), which is given by a Weierstrass equation with coefficients of degree at
most 2. This is done by studying the induced conic and elliptic fibrations on its

Kodaira—Néron model R.

In Chapter 3, we study K3 surfaces X with a non-symplectic automorphism o €
Aut(X) of prime order. We classify distinct elliptic fibrations on X with respect to
the action of o on its respective fibers. Each type of elliptic fibrations is related to a
linear system on the minimal resolution of the quocient R = X/o. When the action
of o on the Néron—Severi group of X fixes the fiber class of an elliptic fibration 7, this
method allows us to determine which Kodaira types are admissible as its reducible

fibers. Furthermore, we are able to determine equations for its generic fiber.

Key-words: Elliptic surfaces, K3 surfaces.






Samenvatting

Dit proefschrift bestaat uit drie hoofdstukken. Het eerste hoofdstuk introduceert de

belangrijkste theorieén die in de daaropvolgende hoofdstukken worden gebruikt.

Hoofdstuk 1 behendelt basisbegrippen uit de theorie van elliptische oppervlakken,
zoals de hoofddefinitie, het verband met elliptische krommen over functielichamen en
de classificatie van verschillende vezeltypes. Daarnaast worden specifieke resultaten

over rationale en K3-elliptische oppervlakken gepresenteerd.

In Hoofdstuk 2 bestuderen we de rang van een elliptische kromme &, gedefinieerd over
het functielichaam k(7T), die wordt gegeven door een Weierstrass-vergelijking met
coéfficiénten van graad hoogstens 2. Dit doen we door de geinduceerde vezelingen in
kegelsneden en in elliptische krommen op het bij £ behorende Kodaira—Néron-model
R te bestuderen.

In Hoofdstuk 3 bestuderen we K3-oppervlakken X met een niet-symplectisch au-
tomorfisme o € Aut(X) van priem orde. We classificeren verschillende elliptische
vezelingen op X met betrekking tot de werking van o op de respectieve vezels. Elk
type elliptische vezeling is gerelateerd aan een lineair systeem op de minimale resolutie
van het quotiént R = X /o. Wanneer de werking van o op de Néron—Severi-groep van
X de vezelklasse van een elliptische vezeling 7 fixeert, stelt deze methode ons in staat
te bepalen welke Kodaira-types kunnen voorkomen als reducibele vezels. Bovendien

kunnen we vergelijkingen bepalen voor de generieke vezel van zo'n elliptische vezeling.

Sleutelwoorden: Elliptische oppervlakken, K3 oppervlakken.
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Notation

Let k be a perfect field with char(k) = 0, and S a projective surface over k.

We use the following notation.

k is a fixed algebraic closure of k.

S := 8 x; k is the geometric model of S.

NS(S) is the Néron—Severi group of S.

p(S) = rank(NS(S)) is the Picard number of S.

X(S) is the Euler characteristic of S (see (BARTH et al., 2015, Chapter 1.4)).

e(.S) is the Euler number (or the topological Euler—Poincaré characteristic) of
S (see (SCHuUTT; SHIODA, 2019, Section 4.7)).

K is the canonical divisor of S.

m: S — (' is an elliptic fibration with base C.

F, := n71(v) is the elliptic fiber over the point v € C.
(O) is the zero-section of 7.

& is the generic fiber of 7 defined over k(C).

E(k(C)) is the group of k(C)-points of £ with rank 7y,

E(k(C)) = MW(r) is the group of k(C)-points of € with rank r, which we call
the Mordell-Weil group of 7.

¢: S — C'is a conic bundle with base C.

G, = ¢ '(v) is the conic fiber over the point v € C.
Let L be a lattice and N C L a sublattice.

N+ is the orthogonal complement of N inside L.

Lot is the root type of L, that is, the lattice generated by its roots (see
(SCHUTT; SHIODA, 2019)[Definition 2.16]).
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Introduction

In the study of algebraic geometry, the dimension of a variety is one of
its most important invariants. The most well understood varieties are those of
dimension 1, i.e. algebraic curves. The natural next step is that of dimension 2,
namely, algebraic surfaces. In comparison with curves, there are already many more
open ended questions in the theory of surfaces. Fibrations appear as one way to apply
the knowledge of curves to surfaces. For a projective surface S defined over a field
k, a fibration on S is a surjective map 7: S — C', where C' is a smooth projective
curve over k. For each point ¢ € C, the preimage F; := 7~ 1(t) is called a fiber of
7. The fibers of m form an infinite family of curves with strict properties on their
intersection pattern (e.g. two fibers F}, and Fj, do not intersect). Furthermore, if 1
is the generic point of the curve C, then the generic fiber F, is a curve over k(C)

whose arithmetic and geometric properties are directly related to those of S.

In this work, we restrict our focus to rational and K3 surfaces. Rational
surfaces, that is, surfaces which are geometrically birational to the projective plane,
belong to the simplest class on the Kodaira classification, and were among the first
to be investigated. On the other hand, K3 surfaces are more complicated, but are
also endowed with rich geometric properties. Specifically, we study surfaces in these
classes which posses more than one distinct fibration. In our first work, we study
rational surfaces with an elliptic fibration and a conic bundle, i.e. fibrations in elliptic
curves and conics, respectively. In our second work, we study K3 surfaces with

multiple elliptic fibrations.

This thesis consists of three chapters. In the first chapter, we introduce the
necessary background for what follows. We define the object in which we are mainly
interested, that is, elliptic surfaces. We present some of the main results in the
theory of elliptic surfaces, such as the classification of reducible fibers in a relatively
minimal elliptic fibration and the Shioda—Tate formula. We define rational elliptic
surfaces and present their construction as the resolution of a cubic pencil on P? over
an algebraically closed field. We also introduce K3 surfaces, and recall some of the

results on their non-symplectic automorphisms and elliptic fibrations.

The second chapter deals with elliptic curves over a rational function field

k(T) over a number field k. In particular, we deal with curves £ given by

y? = a3(T)2® + ax(T)2* + ay(T)x + ao(t), (1)
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where a; € k[T] and dega; < 2 for all a;. Furthermore, we assume that
Aai(T) = a3(—27aga; + 18apa,azas + aia; — dagas — 4aias)

is not identically equal to 0, and a;(7T") are not all multiple of the same square
(T — )2

In (NAGAO, 1997), Nagao conjectured a formula for the rank of an elliptic
curve over Q(T). Nagao’s formula consists on the limit of a weighted average of
the Frobenius traces for distinct fibers &, i.e. elliptic curves over Q obtained by
the specialization map T +— t for each ¢t € Q. In (ROSEN; SILVERMAN, 1998),
Rosen and Silverman were able to prove Nagao’s conjecture for elliptic curves £ such
that their Kodaira—Néron model is a rational elliptic surface. In particular, this is
true for a curve £ given by Equation 1. This fact was used to calculate the rank
of several families of elliptic curves over Q(7") (see (ARMS; LOZANO-ROBLEDO;
MILLER, 2007), (MEHRLE et al., 2017), (SADEK, 2022),(BATTISTONI; BETTIN;
DELAUNAY, 2021)).

In this work, we approach the same problem (i.e. determining the rank of
elliptic curves given by Equation 1) using different methods. We use two distinct
geometric structures associated to the curve £. Firstly, we use the aforementioned
Kodaira—Néron model, which consists of a rational surface R together with an elliptic
fibration 7: R — P'. Then, we notice that Equation 1) induces another kind of
fibration on R; namely a conic bundle ¢: R — P!. We use the interaction between

both geometric structures to study the rank of the elliptic curve £ over k(7).
In (ARTEBANI; GARBAGNATT; LAFACE, 2013) and (COSTA, 2024), the

reducible fibers of a conic bundle on a rational elliptic surface are classified in two
main types: fibers of type A, (for n > 2) and fibers of type D,, (for n > 3). We
denote the number of fibers of type A, on ¢: R — P! by § and the rank of £ over
k(T) by 7. We prove that § > r, and define the defect of £ as Df(E) = 6 — r (see
Definition 2.4.4). We define another important number related to £, which we denote
by &y, by analysing the action of Gal(k/k) on the components of the reducible fibers
of ¢ (see 2.4.11). We show that these two numbers are sufficient for determining

bounds for the rank r of £(k(T)), as stated in the following.

Theorem 2.4.16. Let 1y, be the rank of E(k(T')). Then, dx > 1, > 0 — DE(E).

We show that we can determine Df(&) using only two facts: the type of the
fiber of o: R — P! at infinity, which we call G, and the Kodaira types of each fiber

of m: R — P! which has a component in common with G, (see 2.5.1. In particular,
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we use this to prove that for a general curve £ given by Equation 1, Df(€) = 0,

allowing us to conclude the following.

Theorem 2.5.2. Let € be a curve given by Equation 1, and y(T) :== A(T)/az(T)?.
Assume that deg(as) > 1, deg(vy) = 8 and that the resultant Res(as, ) is nonzero.
Then, r, = 0.

The third chapter deals with elliptic fibrations on K3 surfaces. One remarkable
property of K3 surfaces is that they may admit several distinct elliptic fibrations.
It is thus natural to classify the elliptic fibrations on a K3 surface. There are
different ways of defining an equivalence between two fibrations, each leading to a
different classification (details on different classifications are discussed in (BRAUN;
KIMURA; WATARI, 2013)). In (OGUISO, 1989), Oguiso studied surfaces X which
are Kummer surfaces of the product of two non-isogenous elliptic curves, and was
able to use their geometric properties to obtain a full classification of their elliptic
fibrations modulo the action from Aut(X). Another approach was done by Nishiyama
in (NISHIYAMA, 1996), in which he used lattice theoretic techniques developed
by Kneser to determine every possible ADE-type (see Definition 1.1.10) and the
Mordell-Weil rank associated to an elliptic fibration on a K3 surface X with known

Néron—Severi and Transcendental lattices.

Building on the works following Oguiso in (OGUISO, 1989) (see (KLOOSTER-
MAN;, 2005) and (COMPARIN; GARBAGNATI, 2014)), Garbagnati and Salgado
developed a classification method for K3 surfaces X with an involution ¢ which is
non-symplectic, i.e. ¢ acts non-trivially in H*(X) (see (GARBAGNATT; SALGADO,
2019), (GARBAGNATI; SALGADO, 2020), (GARBAGNATI; SALGADO, 2024)).
When the fixed locus of ¢ is nonempty, the quotient X/¢ is a rational surface and
there is a correspondence between elliptic fibration on X and linear system on X/¢.
Their method consists on separating each elliptic fibration on X in three distinct
types depending on the action of ¢ on their fibers, and deducing geometric properties

of the linear systems of X /¢ corresponding with elliptic fibrations of each type.

In this work, we generalize this classification to an automorphism o with
prime order p > 3. We classify each elliptic fibration 7: X — P! on a K3 surface
X with a non-symplectic automorphism o € Aut(X) with prime order as follows.
We say that 7 is of type 1 with respect to ¢ if o preserves every fiber F,,, that is,
if 0(F,) = F, for every v € P. We say that 7 is of type 2 if o acts nontrivially
on the set of fibers of 7, that is, if for every fiber F, there exists w € P! such that
o(F,) = F,, and for at least one v € P! o(F,) # F,. Finally, if o does not fix the
class F' € NS(X) of fibers of 7, then we say that 7 is of type 3 with respect to o.
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When 7: X — P! is an elliptic fibration of type 1 with respect to o, we are
able to obtain the following constraints for the order p of o and the Kodaira types of

the singular fibers of .

Proposition 3.3.1. Let X be a K3 surface and o € Aut(X) a non-symplectic
automorphism of prime order p. If (X, o) admits an elliptic fibration 7: X — P! of
type 1, then p = 2 or 3. Furthermore, if p = 3, the singular fibers of m must be of
type Iy, I1, 1V, 11" or IV*.

For a K3 surface X with a non-symplectic automorphism o of order 3, we
show that each elliptic fibration 7: X — P! of type 2 with respect to o that has its
zero-section preserverd by o induces an elliptic fibration on the surface R given as
the minimal resolution of the quotient X /o (see Proposition 3.3.9). With this, we
are able to show that m comes from the base change of a rational elliptic surface

(Proposition 3.3.10), a fact we exploit in order to characterize its reducible fibers.

Proposition 3.3.12. Let mx: X — P! be an elliptic fibration of type 2 on (X, o),
and assume o preserves the zero-section. Then, o preserves two fibers FX and Fy*,

and every other fiber is in an orbit FX, FX FX of 0. Furthermore, up to permuting

v v V3
FX and F{X we have the following.

i) FX is of type Iy or I forn =0,3,6,9,12.
ii) FX is of type I3, [11* or I, form =0,3,6,9,12,15,18.

i) FX,FX and sz have the same type, which can be 11,111, IV, IV* I* for

v V2

n=20,1o0rl, form=0,1,...,6.

With this, we are able to describe the geometric properties of the linear

systems induced by any elliptic fibration 7: X — P! on the rational elliptic surface

R.

Theorem 3.3.15. The induced pencil A is determined by the type of m.
i) mis of type 1 if and only if A is a conic bundle class of R.
it) 7 is of type 2 if and only if A is a splitting genus 1 pencil of R.

i) m is of type 3 if and only if A is a non-complete linear system.

The linear system A is used to determine explicit equations for the generic

fiber of any elliptic fibration on X of type 1 or 2 with respect to o (see Propositions
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3.3.16 and 3.3.17). Finally, these results are generalized for orders p > 3 under the
condition that o acts triavially on NS(X) (see Propositions 3.6.7, 3.6.8 and 3.6.10).






Parte |

Preparacao da pesquisa






33

1 Background and Definitions

In this chapter, let k be a perfect field with chark = 0. For an algebraic
variety V defined over k, its geometric model is the fiber product V :=V x;, k. By
the universal property of the fiber product, every map m between varieties over k

induces a compatible map between their geometric models, which we denote by 7.

1.1 Elliptic Surfaces

1.1.1 Definition

Definition 1.1.1. Let S be a smooth, projective surface, and C' a smooth, projective
curve, both defined over k. A surjective map w: S — C'is called an elliptic fibration
if

i) all but finitely many fibers F, := 7 *(v) for v € C, are smooth, genus 1 curves;

ii) 7 admits a section defined over k, i.e. a map s: C'— S such that 7 o s = id¢.

We fix a section sg which we call the zero-section of m;

iii) 7 admits at least one singular fiber.

If S is a smooth, projective surface admitting an elliptic fibration m with section
So, then the triple (5,7, sq) is called an elliptic surface. If no fiber F, contains a

(—1)-component, we say that the fibration 7 is relatively minimal.

Remark 1.1.2. In the literature, the existence of a section is not always required.

In this case, elliptic fibrations with section are called Jacobian.

Remark 1.1.3. Item (iii) in Definition 1.1.1 excludes fibrations of product type, i.e.,

the projection of E x C to the second coordinate, when E is an elliptic curve.

Remark 1.1.4. For simplicity, we include fibers of @ when referring to the fibers of
7. To distinguish when a fiber is specifically of 7, we say that it is defined over k.

We apply the same treatment to sections of 7.

Let £ be the generic fiber of an elliptic fibration 7: S — C. Then, £ is a
smooth curve of genus 1 over k(C). By (LANG; NéRON, 1959, Theorem 1), the
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groups E(k(C)) and E(k(C)) are finitely generated. Let rj, and r denote their ranks,

respectively.

Theorem 1.1.5. There is a bijection between sections of m and k(C)-points of £.

Furthermore, if the section is defined over k, then it corresponds to a k(C')-point.
Demonstragio. See (SILVERMAN, 2013, Chapter 111, Proposition 3.10.(c)). ]

By Theorem 1.1.5, the set of sections of 7: S — C' inherits the group structure
of E(k(C)).

Definition 1.1.6. We refer to the group of sections of 7: S — C as the Mordell-Weil
group of 7, and denote it by MW ().

Remark 1.1.7. The image of a section s: C — S is a curve isomorphic to C inside
S. We refer to the curve in S and the k(C)-points of £ induced by the same section

interchangeably, distinguishing between them when necessary.

Notation 1.1.8. We denote the identity of £(k(C)) by O. For any P,Q € E(k(T)),
we denote their sum as P @ @, the sum of P with itself n times by [n]P and its
respective inverse as [—n|P. Let s: C — S be a section corresponding to a point P.
Then, we denote the curve s(C') C S by (P). We assume the zero-section of 7 is
equal to (O).

We have seen that for any elliptic surface, there is a corresponding elliptic
curve over a function field. In fact, this correspondence goes both ways, as stated by

the following proposition.

Theorem 1.1.9. Let C' be a smooth curve, and k(C) its function field. For every el-
liptic curve € over k(C') there is a unique relatively minimal elliptic surface m: S — C

such that the generic fiber of ™ is isomorphic to € as an elliptic curve. This surface
is called the Kodaira—Néron model of €.

Demonstragio. See (SILVERMAN, 2013, Chapter IV, Theorem 6.1). m

1.1.2 Types of fibers on elliptic fibrations

Let F, denote the fiber 77*(v) for v € C. Then, F, and the zero-section (O)
intersect at a single smooth point of F,. Let ©¢, be the component of F, which
intersects (O), and let m, be the number of distinct irreducible components of F,.
We write F, as
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my—1

F, =0, + Z 090,
i=1
where ©; , are the distinct components of F, and p;, their multiplicities.

Definition 1.1.10. Let F, be a reducible fiber of 7: S — C. Then, T, is the lattice
generated by the irreducible components of F, which do not intersect (O), that is,

Tv = <@1,v7 BRI @my—l,v>-

If F, is an irreducible fiber, then T;, = 0. We define the AD E-type of the fibration 7
as the lattice T' given by the sum of T, for each v € C.

T .= @ T,.
veC
Theorem 1.1.11. Let F, be a fiber on a relatively minimal elliptic fibration

m: S — C. Table 1 classifies every possible configuration of the components of F,,,
and shows the lattice T, the J-function j(F,) and the Euler number e(F,).

Demonstragio. See (KODAIRA, 1963) and (NERON, 1964) for the classification
of fibers. The values of T,, J(F,) and e(F,) appear on (MIRANDA, 1989, Table
IV.3.1). O

Theorem 1.1.12 (Tate’s Algorithm). Let £ be an elliptic curve given by a Weierstrass

equation

Y+ arry + asy = 2° + axx® + agx + ag,

with a; € k(C) for some smooth curve C. Using this equation, we can determine the

Kodaira type of the fiber F, on the Kodaira—Néron model w: S — C of € for each
vel.

Demonstragio. See (TATE, 1975). O

The configurations of fibers in an elliptic surface is restricted by the following.

Proposition 1.1.13. Let 7: S — C be an elliptic surface. Then,

o(S) = 3 e(F)

veC

Demonstragio. See (COSSEC; DOLGACHEV, 1989, Proposition 5.16). O]
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Type | Configuration Dual graph T, | J(F,) | e(F,)
Iy d * 0 # 00 0
I O< ° 0 o0 1
[2 }z *—0 A1 (0.¢] 2
I, : : ’/\ Apr | o0 n

o

11 % ° 0 0 2
117 >< —e A 1 3

B M o Dy | 00| 6

I L J }(: Dy %) n+6
v m o—o—L« Eg 0 8
I1r w H—Q—I—H—O F; 1 9
1I* w O—Q—I—O—O—Q—H Ey 0 10

Tabela 1 — Kodaira’s classification of fibers on elliptic fibrations

1.1.3 The Néron—Severi lattice

Let NS(S) be the group of divisors of S modulo algebraic equivalence, which
we call the Néron—Severi group of S (see (SHAFAREVICH, 2013, Chapter 111.4.4)).

We denote the rank of NS(5) as a Z-module by p(5), and refer to it as the Picard

number of S. For any projective surface S over k, the Néron—Severi group NS(S) has

a bilinear pairing given by the intersection product. When S is an elliptic surface,

this pairing endows NS(S) with a lattice structure.

Proposition 1.1.14. Let 7: S — C be an elliptic surface. Then, NS(S) is torsion

free, and the intersection product (- ) is non-degenerate. Consequently, (NS(S),(-))
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has a lattice structure.

Demonstragio. See (SHIODA, 1990, Theorem 1.2). O

Definition 1.1.15. Let 7: S — C be an elliptic surface over k and D C S be an
irreducible curve. We say that D is (with respect to 7) vertical if T(D) = v € C and
horizontal if w(D) = C. We say that D € NS(S) is vertical (resp. horizontal) if D is

represented by a sum of irreducible curves which are all vertical (resp. horizontal).

Notice that the vertical divisors in NS(S) correspond to fiber components of
m: S —=C.

Definition 1.1.16. We define the trivial lattice of an elliptic surface (S, , s¢) as
Triv(S) = (F,(0)) @ T,

where F' is the fiber class of 7, (O) the zero-section and 7' the ADE-type of 7 (see

Definition 1.1.10). Equivalently, Triv(S) is the sublattice of NS(S) generated by the

prime vertical divisors of S with respect to 7 and the zero-section.

Theorem 1.1.17. Let m: S — C' be an elliptic fibration with generic fiber £ defined

over k(C). Then, there is an isomorphism

Corollary 1.1.18. As a consequence of Theorem 1.1.17, the Picard number of an

elliptic surface is given as follows,

o(5) =2+ X (m,— 1)+,
vel

where 1 is the rank of E(k(C)). This is known as the Shioda—Tate formula.

Let F' be the fiber class of 7 and (O) the zero-section. Together they determine
a sublattice (F, (O)) C NS(95).

Definition 1.1.19. The lattice W, := (F, (0))*N5) is called the frame lattice of
(S, , 80).

Remark 1.1.20. Notice that on Definition 1.1.19 our notation for the orthogonal
complement exhibits the ambient lattice explicitly. This is not standard, but it is
useful as in Chapter 3 we work with orthogonal complements of the same sublattice

over distinct ambient lattices (e.g. Tables 6 and 9).
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The frame lattice is related to the ADFE-type of m through the following.

Proposition 1.1.21. Let 7: S — C be an elliptic surface, and assume its Fuler

characteristic x(S) is greater than 1. Then the following affirmations are true.

i) The root of the frame lattice determines the ADE-type of m, that is,
(Wﬁ)root =T.
it) MW (m) =2 W, /T.

Demonstragio. See (SCHUTT; SHIODA, 2019, Proposition 6.42) for item (i). Item

(ii) is a consequence of (i) and Theorem 1.1.17. O

The following proposition shows a connection between the linear relations of

points of £(k(T)) and the vertical divisors of S with respect to 7.

Proposition 1.1.22. Let Py,..., P, be k(T)-points of the generic fiber £ of an
elliptic surface w: S — P, and let ny,...,n,, € Z be integers such that

[P @ -+ @ [ny)| P = O.

Then forn =ny + -+ + Ny, the divisor ny(P) + -+ + ny(Pn) — n(0) € NS(S) is

vertical.

Demonstragio. See (SILVERMAN, 2013, Chapter 111, Proposition 9.2). O

1.1.4 Base changes of elliptic surfaces

Let m: S — C be a relatively minimal elliptic fibration. If C” is a smooth

curve with a surjective map 7: C' — C', we can construct the fiber product S xo C’.

S%SXCC,

| |

C +—

The generic fiber of the map S xc C’" — " is an elliptic curve, but S x¢ C’
has singularities when at least one fiber over the ramification locus of 7 is singular, so
it is not necessarily an elliptic surface. After resolving singularities and contracting
(—1)-components of fibers, we obtain a surface S’ with a relatively minimal elliptic
fibration 7’: " — C”. We call this elliptic surface the base change of 7: S — C by
T:C" = C.
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Take v € C and v € C’ such that 7(v') = v, and let r(v'|v) denote its
ramification index. Let F, denote the fiber (7/)~!(v') and F,, denote the fiber 71 (v).
Then, it is possible to determine the Kodaira type of F), in terms of the Kodaira
type of F, and r(v'|v).

Proposition 1.1.23. The Kodaira type of F), is determined according to Table 2.

F, r(v'|v) F), F, r(v'|v) F),
I, m In I 'm=1 mod2| I},
m=0 mod 2 | I,

II |m=1 mod6 | II II* |m=1 mod6 | II*
m=2 mod6 | IV m=2 mod6 | IV*
m=3 mod6 | I m=3 mod6 | I
m=4 mod6 | IV* m=4 mod6 | IV
m=5 mod6 | I[* m=5 mod6 | II
m=0 mod6 | I m=0 mod6 | I

III |m=1 mod4 | IIl || III* | m=1 mod4 | II[*
m=2 mod4 | I m=2 mod4 | Ij
m=3 mod4 | [I[* m=3 mod4 | II]
m=0 mod4 | I m=0 mod4 | I
IV.!m=1 mod 3| IV IV {m=1 mod 3| IV*
m=2 mod3 | IV* m=2 mod3 | IV
m=0 mod3 | I m=0 mod3 | I

Tabela 2 — Kodaira type of fibers after base change

Demonstragio. See (MIRANDA, 1989, Table VI.4.1). O

1.2 Rational elliptic surfaces

1.2.1 Construction of rational elliptic surfaces

Definition 1.2.1. We say that R is a rational elliptic surface if R is rational and
there is an elliptic fibration 7: R — C.

As a consequence of Liiroth’s theorem, the basis C' of 7 is always a rational

curve. For simplicity, we assume C' = P!,

Proposition 1.2.2. Let F and G be two cubics in P? without any common com-
ponents. Then, the resolution of the rational map ¢: P? --» P! given by P +
[F(P):G(P)] is a rational surface R endowed with an elliptic fibration 7: R — PL.
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Over algebraically closed fields, every relatively minimal rational elliptic
surface can be obtained by such a resolution (see (MIRANDA, 1989, Lemma IV.1.2)).

In general, rational elliptic surfaces have the following properties.

Proposition 1.2.3. Let m: R — P! be a relatively minimal rational elliptic surface
defined over k. The following hold.

i) p(R) = 10.
i) e(R) = 12.
iii) Kp=—F.

i) A rational curve C C R is a section of  if and only if C* = —1.

v) A rational curve C C R is a fiber component of m if and only if C* = —2.

Demonstragio. See (SCHUTT; SHIODA, 2019, Proposition 7.5) for items (i) and
(i), (SCHuTT; SHIODA, 2019, Proposition 5.28) for item (iii). Items (iv) and (v)
are a consequence of the Adjunction Formula (see (BEAUVILLE, 1996, Theorem
1.15)). O

Notice that (i) in Proposition 1.2.3 simplifies the Shioda-Tate formula (Corol-

lary 1.1.18) when S is a rational elliptic surface, as stated by the following corollary.

Corollary 1.2.4. Let m: R — P! be a rational elliptic surface and r the rank of its
generic fiber € over k(T). Then,

r=8—>Y (m,—1).

vePL
k

Let £ be an elliptic curve over k(T'), and let 7: S — P! be its Kodaira—Néron
model. We can use a minimal Weierstrass equation for £ to determine whether S is

a rational surface.

Proposition 1.2.5. Let £ be given by a minimal Weierstrass equation
v? 4 ay(T)ay + as(T)y = 2 + ax(T)x* + ay(T)x + ag(T),

such that a; € k(T) are not all constant. Let w: S — P! be the Kodaira—Néron model
of £. Then, S is a rational surface if and only if deg(a;) < i.

Demonstragio. See (SCHUTT; SHIODA, 2019, Chapter 5.13). O
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1.2.2 Conic bundles on rational elliptic surfaces

Definition 1.2.6. Let S be an algebraic surface over k. A conic bundle on S is a
surjective morphism ¢: S — C' to a smooth curve C' such that all but finitely many

fibers are irreducible curves of genus 0.

In particular, the generic fiber of a conic bundle ¢: S — C'is a curve of genus

0 over k(C). As a consequence, we have the following proposition.

Proposition 1.2.7. If p: S — C is a conic bundle, then the induced morphism
S — C has a section.
Demonstragio. By a result of (TSEN, 1933), every conic over k(C) has a point,

which induces a section of ¢. m

We are mainly interested in conic bundles on rational elliptic surfaces. These
objects were studied in (ARTEBANI; GARBAGNATTI; LAFACE, 2013) and (COSTA,
2024), for example. Let R be a rational surface and ¢: R — C a conic bundle. As in
the case of elliptic fibrations over rational surfaces, we assume for simplicity that
C =P

Example 1.2.8. Let F and G be two smooth cubic curves in P? such that sF + tG
doesn’t have reducible curves and F NG consists of 9 distinct points Py, ..., Py. Then,
the induced rational elliptic surface 7: R — P! has no reducible fibers. Let A; be the
pencil of lines in P? through Py. Then A; induces a conic bundle ¢: R — P! with
exactly 8 reducible fibers, corresponding to the the lines /¢4,..., s, where ¢; is the
line through P; and F,.

Let G be the fiber class of . Then, G is a nef divisor such that G? = 0 and,
by adjunction, G - (—Kg) = 2. In what follows, we see that these conditions are

sufficient for characterizing the conic bundles of R.

Definition 1.2.9. Let 7: R — P! be a rational elliptic surface. Then, G € NS(R) is
called a conic class if G is nef, G* =0 and G - (—Kpg) = 2.

Proposition 1.2.10. Let 7: R — P! be a rational elliptic surface. Then, every conic

class G induces a conic bundle p: R — P with G as its fiber class.

Demonstragio. See (COSTA, 2024, Theorem 3.8). O



42 Capitulo 1. Background and Definitions

Assume that the elliptic fibration 7: R — P! is relatively minimal. Then, we

classify the fibers of ¢ as follows.

Theorem 1.2.11. Let R be a relatively minimal rational elliptic surface and
©: R — P a conic bundle. Then, every fiber of ¢ fits in one of the types described
in Table 3.

Type Intersection Graph

0 *
Ao o—o0
1 1
A, (n>3) O—o -0
1 1 1 1
Ds 0o
1 2 1

1
D, (n>4) }a—o
162 2 2

* smooth, irreducible curve of genus zero

O (—1)-curve (section of )
® (—2)-curve (component of a reducible fiber of 7)

Tabela 3 — fibers in conic bundles over rational elliptic surfaces

Demonstragao. See (COSTA, 2024, Theorem 4.2). m

Example 1.2.12. Let ¢: R — P! be the conic bundle described in Example 1.2.8,
and let G4, ..., Gy be its reducible fibers. Since the elliptic fibration 7: R — P! has
no reducible fibers, by Proposition 1.2.3 R has no rational (—2)-curves. Then, by
Theorem 1.2.11, every G; is a fiber of type A,. The components of GG; correspond
to ¢; and E;, which are the strict transform of ¢; and the exceptional curve of the

blow-up of P;, respectively.

1.2.3 Splitting genus 1 pencils

Let 7: R — P! be a rational elliptic surface. We are interested in pencils of
curves of genus 1 on R. One clear example of such system is the pencil of fibers
induced by 7. When 7 is relatively minimal, this is the only base point free pencil of
genus 1 curves. On the other hand, if 7 is not relatively minimal, it is possible to

have multiple such pencils.

Definition 1.2.13. A splitting genus 1 pencil on a rational elliptic surface (which

may not be relatively minimal) R is a proper morphism ¢: R — P! such that
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i) Oy :=p!(s) is a genus 1 curve for almost all s € P!

ii) Cs- Kp=0for all s € P.
The pencil of curves {C,}4cp1 is also called a splitting genus 1 pencil.

The use of the term "splitting"comes from the fact that under specific base
changes, each splitting genus 1 pencil ¢: R — P! determines an elliptic fibrations
on a K3 surface X such that every genus 1 curve Cj is split into a fixed number of

isomorphic copies (see Theorem 3.3.15).

Example 1.2.14. Let F,G,H be cubics in P? with no common components, and
assume that H is not in the pencil A; = F +1tG. We can define a pencil Ay = F +tH
distinet from A;. Let R be the surface obtained by blowing up the base points of
both A; and A,. These pencils induce two distinct elliptic fibrations 7 : R — P!
and 7y: R — P! which are not relatively minimal, and the families {m;'(s)}scp are

splitting genus 1 pencils of R.

1.3 K3 surfaces

In this section, we assume that & is an algebraically closed field, that is, & = k,

and char(k) = 0. As a consequence, for every variety V we have that V = V.

1.3.1 Definition

Definition 1.3.1. A K3 surface is a smooth, projective surface X over k with trivial
canonical divisor and irregularity 0, that is, Kx = 0 and ¢(X) = h'(X,Ox) = 0.

Example 1.3.2. Let 7: X — P? be a double covering ramified over a smooth
sextic C. Then, X is a K3 surface (see (HUYBRECHTS, 2016, Chapter 1, Example

1.3.(iv))).
We can calculate the following for K3 surface.

Proposition 1.3.3. Let X be a K3 surface. Let x(X) denote the Euler characteristic
and e(X) the Euler number (see (SCHUTT; SHIODA, 2019, Section 4.7)) of X. The

following is true.

i) x(X) = 2.
i) e(X) = 24.
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iii) p(X) < 20.

Remark 1.3.4. Let k be a field with char(k) > 0. Then, item (iii) in Proposition
1.3.3 is not true for every K3 surface. Instead, there is a bound p(X) < 22 (see
(HUYBRECHTS, 2016)[Chapter 1, Remark 3.7]), and there are known for which
p(X) = 22 (see (SHIODA, 1973)).

Demonstragio. See (HUYBRECHTS, 2016, Chapter 1, 2.3) for item (i). Item (ii) is
a consequence of (i) and Noether’s Formula (see (BEAUVILLE, 1996, 1.14)), and
Item (iii) is proved in (HUYBRECHTS, 2016, Chapter 1, 3.3). ]

Proposition 1.3.5. The lattice H*(X,Z) endowed with the cup product is isometric
to Az := U3 @ Eg(—1)%2, which we call the K3 lattice.

Demonstragio. See (HUYBRECHTS, 2016, Chapter 1, Proposition 3.5). m

The intersection product of X endows NS(X) with a lattice structure (see
(HUYBRECHTS, 2016, Chapter 1, Proposition 2.4)), which can be isometrically em-
bedded in H%(X,Z) via the first Chern map. We consider its orthogonal complement

in the following definition.
Definition 1.3.6. The transcendental lattice of X is defined as

Ty := NS(X)H (X2,

1.3.2  Automorphisms of K3 surfaces

Let X be a K3 surface and o € Aut(X) an automorphism of X. Since
Kx =0, we have h’(X, Kx) = h%(X, Ox) = 1, and we can choose a generator wy of
H°(X, Kx). Then, o induces an action on H°(X, Kx) with the map wx + o*(wx).

Definition 1.3.7. We say that an automorphism o is symplectic if 0*(wx) = wx

and non-symplectic otherwise, that is, if 0*(wx) = awx for some « € k.

Theorem 1.3.8. Let X be a K3 surface and o a non-symplectic automorphism
of finite order m. Then, o*(wx) = (uwx, where 1 # (, is an mth root of unity.

Furthermore, p(m) < 21, and consequently m < 66.
Demonstragio. See (NIKULIN, 1980, Theorem 0.1). O

Let X be a K3 surface endowed with a non-symplectic automorphism o of
prime order p. By Theorem 1.3.8, p is at most equal to 19. Denote the fixed locus of
o by Fix(o).
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Theorem 1.3.9. Let X be a K3 surface and o € Aut(X) a non-symplectic auto-
morphism of prime order p. If p = 2, then Fix(o) is either empty, the disjoint union
of two elliptic curves or the disjoint union of m smooth curves C' U Ly U ... U Ly,

where C' is a curve of genus g > 0 and L; are rational curves. If p > 3, then
Fix(c)=CU Ly U...U Ly, U{P,..., P},

where C' is a smooth curve of genus g > 0, L; are smooth rational curves and P,

isolated fixed points.

Demonstragio. See (ARTEBANI; SARTI; TAKI, 2011, Lemma 2.2). ]

Proposition 1.3.10. Let x € X be a point fixed by a non-symplectic automorphism
o of order p. Then there are local coordinates (21, z9) around x such that the action

of o is given by one of the following linear maps

t+1 0
Ap,t: (Cp pt) >t:Oa17"'7p_27
0 ¢

where C, is a primitive root of unity of order p. If the local action is given by A,,

then x is a point in a fixed curve. Otherwise, x is an isolated fixed point.

Demonstragao. The fact that an automorphism can be seen to act linearly around a
fixed point is a classical result by Cartan (see (CARTAN, 1954-1954, Lemma 1)).
The application to non-symplectic automorphisms stems from work of Nikulin (see
(NIKULIN, 1980, Section 5)). O

Remark 1.3.11. For a non-symplectic involution, the only possible action around a
fixed point is (21, z2) — (—21, 22), which indicates that the fixed point is part of a

fixed curve. In other words, there are no isolated fixed points.

Theorem 1.3.12. Let X be a K3 surface and o € Aut X of finite order n > 1. Let
Y be the resolution of the quotient X/o.

i) If o is symplectic, then X /o is a K3 surface.

it) If o is non-symplectic with n = 2 and Fix(c) = &, then Y is an Enriques

surface.

iii) If o is non-symplectic and either n > 2 or Fix(c) # &, then Y is rational.

Demonstragio. See (KONDo, 2018, Lemma 4.1) for item (i), (ZHANG, 1999, Lemma
1.2), and (XIAO, 1995, Lemma 2) for items (ii) and (iii). O
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1.3.3 Elliptic fibrations on K3 surfaces

Let X be a K3 surface and 7: X — C a relatively minimal elliptic fibration.
As in the case of rational elliptic surfaces, we assume C' = P!. Let F be the fiber class
of 7 and (O) the zero-section. The lattice (F, F' 4+ (O)) determines an embedding of
the hyperbolic lattice U into NS(X). On the other hand, the following holds.

Proposition 1.3.13. Let X be a K3 surface and v: U < NS(X) an embedding of
lattices. Then, there is a relatively minimal elliptic fibration w: X — P such that its

frame lattice W is isometric to 1(U)NSE,
Demonstragio. See (KONDo, 1992, Lemma 2.1). ]

Since U is unimodular, we can write NS(X) = U & W,. Consequently, W is
an even lattice with signature (0, p(X) — 2) and its discriminant lattice is isomorphic
to that of NS(X).

Proposition 1.3.14. Let 7: S — P! be an elliptic fibration. Then, S is a K3 surface
if and only if e(S) = 24.

Demonstragio. 1If S is a K3 surface, then e(S) = 24 by Theorem 1.3.3. Assume

e(S) = 24. Since S is elliptic, we can write its canonical divisor as
Ks = (\(S) - 2)F, (1.1)

where F' is the fiber class of 7 and x(S) the Euler characteristic of S. In particular
K2 = 0. Thus, by Noether’s Formula (see (BEAUVILLE, 1996, 1.14)), we have

e(S) + K2

x(9) :T:Z

Consequently, by Equation 1.1 we have Kg = 0. By Serre Duality ((BEAUVILLE,
1996, Theorem 1.11)), h?(S, Og) = h%(S, K5) = h°(S, Og) = 1. Thus, by the definition

of the Euler characteristic, we have
Q(S) = hl(S7 OS) = hO(Sv OS) + h2<S> OS) - X(S) =0.

This proves that S is a K3 surface. O
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2 Conic bundles and Mordell-Weil ranks

of elliptic surfaces

2.1 Introduction

This chapter is based on the paper (MEIRA, 2025). This paper is accessible

through arXiv and is currently under review for publication.

Let k be a number field, and £ a curve over the function field k(7") given by

an equation of the form

y? = a3(T)2® + ax(T)2* + ar(T)x + ao(t), (2.1)

where a;(T) are polynomials in k[T] of degree at most 2. We further assume that

Aai(T) = a3(—27a3a3 + 18apa,azas + aa; — dagas — 4asas)

is not identically equal to 0, and a;(T) are not all multiple of the same square (T — ¢)?.

With these conditions, £ defines an elliptic curve over k(7). Curves in this form
have been studied in (ARMS; LOZANO-ROBLEDO; MILLER, 2007), (KOLLAR,;
MELLA, 2017), (BATTISTONI; BETTIN; DELAUNAY, 2021).

In this chapter, we study the Mordell-Weil rank of r of £(k(T)) through the
geometry determined by Equation 2.1. By Theorem 1.1.9, £ has a Kodaira—Néron

x Yy
a5 () and y — a5 ()

we can use Proposition 1.2.5 to deduce that R is rational. Furthermore, we can

model 7: R — P!. By applying the changes of coordinates x +

rewrite Equation 2.1 as

y* = A(x)T? 4+ B(2)T + C(x). (2.2)

The projection to the z-coordinate in Equation 2.2 determines a conic bundle
¢: R — Pl Each root 6 of Agnic(x) := B(x)? — 4A(x)C(z) induces a k(T)-point

Py € E(k(T)). Namely,

(2.3)
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Each of these points corresponds to a (—1)-component in a reducible fiber of
¢ (see Theorem 1.2.11). As an application of Nagao’s conjecture ((NAGAO, 1997)),
which was proven by Rosen and Silverman for rational elliptic surfaces ((ROSEN;
SILVERMAN, 1998)), we obtain families of curves £ in which the number of k(T)-
points induced by roots of Aconic(z) is equal to the rank r; exactly (see (ARMS;
LOZANO-ROBLEDO; MILLER, 2007, Theorem 2.1)). This is not true in general —
indeed, there are cases where ry, is strictly smaller than the number of roots of Agonie
(see (SHIODA, 1991, Theorem Aj)).

2.1.1 Chapter structure

Section 2.2 surveys Nagao’s conjecture and its applications to determine the

Mordell-Weil rank of elliptic curves as in Equation (2.1).

Section 2.3 deals with a general rational surface R with a relatively minimal
elliptic fibration 7: R — P! and a conic bundle ¢: R — P!. In 2.3.1, we adapt results
from standard conic bundles to obtain a description of the Néron—Severi group NS(R)
and the canonical divisor Kg. In 2.3.2, we compare the number ¢ of fibers of type

A, in ¢ and the rank r of the generic fiber of 7.

In Section 2.4 we apply the results of the previous section to surfaces R given
by Equation (2.1) and Equation (2.2). In 2.4.1, we determine the types of the singular
fibers of the conic bundle ¢ from Equation (2.2). In 2.4.2, we define the defect of
&, and prove that the points P induced by the conic bundle ¢ generate a finite

index subgroup of £(k(T")). In 2.4.3 we define the number dj, in terms of the action
of Gal(k/k) on the fibers of ¢ and prove our main result, d; — Df(€) < ry, < 6y,.

Section 2.5 deals with using the bounds for r; to determine the rank r; of
families of curves given by Equation (2.1). In 2.5.1, we determine Df(E) from the
fiber configuration of 7 and . In 2.5.2, we explore cases in which Df(€) = 0, and
provide families for which 7, = d;. In 2.5.3 we explore cases with Df(£) > 0, and
provide families with Df(€) = 1 for which we can determine if ry, = dy or 7, = 6 — 1

depending on the coefficients of £ in Equation (2.2).

2.2 Nagao's Conjecture and Applications

In this section, we state Nagao’s conjecture and give a brief exposition on
subsequent theorems and applications. We follow the original exposition of the
conjecture in (NAGAO, 1997), so we work over Q.
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Let £ be an elliptic curve over Q(T'), given by an equation in Weierstrass

form

E: y2 + a1 (T)xy + a3(T)y = 2+ as(T)x + ay(T)x + ag(T),

with coefficients a;(T") € Z[T]. For all but finitely many ¢ € Q, the specialization map
T — t yields an elliptic curve & over Q. For each prime p € Z~( of good reduction,
we consider a;(p) the trace of the Frobenius at p on &, given by p+ 1 — N,(p), where
Ni(p) is the number of F, points of & (we say that a;(p) = 0 if p | A(¢)). Further,

consider the average over fibers

Ae(p) = ;jz:;)axp).

In 1997, based on several explicit calculations for the Mordell-Weil rank

of £(Q(T")) on nontrivial families, Nagao conjectured a limit formula relating
rank £(Q(T)) to the values of Ag(p) (see (NAGAO, 1997, Question (2))).

Conjecture 2.2.1. Let £, Ag(p) be as defined above, then

1
Jim <= > —Ag(p)logp = rank £(Q(T)).
p<X
In the following year, Rosen and Silverman published a proof that Tate’s
conjecture implies Nagao’s conjecture, settling it in particular for rational elliptic
surfaces (see (ROSEN; SILVERMAN, 1998, Theorem 1.3)).

Theorem 2.2.2 (Rosen, Silverman). Nagao’s conjecture holds for rational elliptic

surfaces.

In (ARMS; LOZANO-ROBLEDO; MILLER, 2007), Arms, Lozano-Robledo
and Miller apply Rosen and Silverman’s result to elliptic curves over Q(7") given by

an equation of the form

y* = 23T 4+ 2g(x)T — h(x), where (2.4)
g(x) = 2° + ax® + bx + ¢, ¢ # 0;
h(z) = (A —1)2° + Bz* + Cz + D.

Applying the coordinate change = to Equation 2.4, we check

TP roT A1
that it indeed corresponds to a rational elliptic surface (see (SCHUTT; SHIODA,
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2019, Chapter 5.13)). The theory of quadratic Legendre sums is used to prove the

following.

Theorem 2.2.3. For infinitely many integers a,b,c, A, B,C, D, the polynomial
Dr(z) = g(x)?*+23h(x) has 6 distinct, nonzero roots which are perfect squares, and the
curve € given by Equation 2.4 is an elliptic curve over Q(T') with rank E(Q(T")) = 6.

Demonstragio. See (ARMS; LOZANO-ROBLEDO; MILLER, 2007, Theorem 2.1
and Remark 2.2). ]

This was later generalized to any number field in (MEHRLE et al., 2017,
Theorem 1.1). In (SADEK, 2022, Theorem 5.3), this result is expanded to curves
over Q(T") given by Equation 2.1 such that degas(T) = 2.

A similar strategy was employed by Battistoni, Bettin and Delaunay in
(BATTISTONI; BETTIN; DELAUNAY, 2021) to obtain rank formulas for elliptic

curves over Q(7') of the form

y* = A(x)T? + B(2)T + C(z), (2.5)

where deg A(x),deg B(z) < 2, at least one of A(x), B(x) is not identically zero, and
C'(z) is monic and of degree 3. They obtain four distinct formulas for rank £(Q(7)),
depending on if A(z) = 0, A(z) = p € QF, deg(A) = 1 or deg(A) = 2 (see
(BATTISTONI; BETTIN; DELAUNAY, 2021, Theorem 1)).

When A(z) = 0, the formula is simplified as follows.

Theorem 2.2.4 (Battistoni, Bettin, Delaunay). Let £ be an elliptic curve over Q(T)
given by an equation of the form 2.5, and assume A(x) = 0. Then,

rank E(Q(T)) = #{[0] : B(0) = 0,C(0) € Q(0)*\ {0}},
where [0] denotes the orbit of 0 by the action of the Galois group Gal(Q/Q).

Demonstragio. See (BATTISTONI; BETTIN; DELAUNAY, 2021, Theorem 2). [

When A(z) = p € Q*, the formula is also simplified.

Theorem 2.2.5 (Battistoni, Bettin, Delaunay). Let £ be an elliptic curve over Q(T)
given by an equation of the form 2.5, and assume A(x) = u € Q*. Then,

#{[0] : B*(0) — 4uC(0) = 0} — 1 if € Q?,

rank £(Q(7)) = ‘
#{(0] : B*(0) — 4pC(0) =0, € Q(O)*\ {0}} if pe Q\ Q™
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Demonstragio. See (BATTISTONI; BETTIN; DELAUNAY, 2021, Theorem 1, Sec-
tion 3.1). O

When deg(A) =1 or 2, the formula provides the following upper bound for
the rank.

Theorem 2.2.6 (Battistoni, Bettin, Delaunay). Let £ be an elliptic curve over Q(T)
given by an equation of the form 2.5. Then,

rank £(Q(T)) < #{[0] : BX(6) — 4A(6)C(6) = 0}.

Demonstragio. See (BATTISTONI; BETTIN; DELAUNAY, 2021, Proposition 14).
O

2.3 Conic bundles on rational elliptic surfaces

In this section, let R be a rational elliptic surface with a relatively minimal
elliptic fibration 7: R — P!, and ¢: R — P! a conic bundle.

2.3.1 Generalities on conic bundles

We start by establishing notation for the reducible fibers of the conic bundle
¢: R — P, By Theorem 1.2.11, every reducible fiber of ¢ is of type A,,, with n > 2,
or D, with n > 3. Let §() be the number of fibers of type A, and €(¢) the number
of fibers of type D,,. Notice that these numbers depend on the conic bundle ; a
rational elliptic surface may be endowed with two different conic bundles ¢, and ¢,
such that d(¢1) # d(p2). Through the rest of this section, we fix one conic bundle ¢
and refer to 0(p),e(p) as 6, g, respectively. Next, we establish further notation for
the fibers of .

Notation 2.3.1. A fiber o~ !(v) is denoted by G,, its number of components by n,

and its class in NS(R) by G.
Denote the fibers of type A, by G, ..., Gy,. We write

nvi-l

Gy = Y . (2.6)
j=0

The components in Equation 2.6 intersect following the graph of fibers of

type A, in Table 3, with o2 g =07 , ;=—land o} ;= —2for j=1,...,n, —2.
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Denote the fibers of type D,, by Gy, ..., G,.. We write

nwi—l

Gwi - Bwi,O + Bwi,l +2 Z Bwi,j- (27)
=2

Similarly, the components in Equation 2.7 intersect following the graph of
fibers of type D,, in Table 3, with 32, , |, = —land g3}, ;= —2for j =0,... 1, —2.

Let G, be a reducible fiber of ¢. Then e(G,) = n, + 1 independently of the
type of G,, since the fiber is composed of n, rational curves intersecting in n, — 1

distinct points. We can use this fact to limit the possible configurations of fibers.

Proposition 2.3.2. For ¢: R — P! a conic bundle over a rational elliptic surface,

we have the following formula.

Z (n, —1) =
veP!
Demonstra¢io. By (COSSEC; DOLGACHEV, 1989, Proposition 5.1.6), the Euler

number of R is given by

e(R) = e(Gyle(P) + > (e(Go) — e(Gy)),
veP!
where G, is the generic fiber of ¢. By Proposition 1.2.3, ¢(R) = 12. Substituting
e(G,) = e(P') =2 and ¢(G,) = n, + 1, we obtain the result. O

In what follows, we deal with the concept of standard conic bundles, which is

defined as follows.

Definition 2.3.3. Let ¢: S — P! be a conic bundle. We say that it is standard if

every reducible fiber of ¢ is given by two concurrent rational (—1)-curves.

Notice that, if ¢: R — P! is a conic bundle and R is a rational elliptic surface
with a relatively minimal elliptic fibration 7: R — P!, then ¢ is standard if and only
if every reducible fiber is of type A, with respect to the classification in Theorem
1.2.11.

When a rational surface R has a standard conic bundle, we can describe the

generators of the Néron—Severi group NS(R), and exhibit the canonical divisor Kg

explicitly in terms of said generators.
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Theorem 2.3.4. Let S be a rational surface such that K% = d, and let ¢: S — P!
be a standard conic bundle. The following hold.

i) There are v = 8 — d reducible fibers of y, all of which are composed of two

concurrent exceptional curves.

ii) There is a free basis of NS(S) given by (G, H, l,...,0.), where G is the fiber
class of ¢, H is a section of ¢ and {1, ..., L. are the components of the reducible

fibers of v not intersecting H.

i11) The canonical divisor of S is given by
Ks=—2H + (H?> - 2)G+ X7, {;.
Demonstragio. See (KUNYAVSKII; TSFASMAN, 1985, Proposition 0.4). O

The rest of this section is devoted to generalizing Theorem 2.3.4 to any conic

bundle over a (relatively minimal) rational elliptic surface.

Assumption 2.3.5. Fix a section H C R of the conic bundle ¢: R — P!. Then,
H -G, =1, so H intersects a single simple component of G,. For the fibers G,,
of type D, H can only intersect 3, 0 or By, 1, and we can assume without loss of
generality that it intersects (3, 9. On the other hand, for the fibers G, of type A,
H can intersect any component. Let k; be the number such that H intersects o, i,

We can assume without loss of generality that 0 < k; < n,, — 2.

Proposition 2.3.6. Let R be a rational elliptic surface and ¢: R — P a conic
bundle on R with a fized section H C R. Then, there is a contraction n: R — Ry
such that

i) H does not intersect any of the curves contracted by n;
ii) there is a standard conic bundle py: Ry — P! such that ¢ = @y on.
In other words, n(H) is a section of @o: Ry — P
Demonstragio. Let E be a (—1)-component of a fiber of ¢. Then, the pushforward

of the fiber class G by the blow-down of E induces a conic bundle commuting with

the blow-down map.
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Let G,, be a fiber of type A, such that n,, > 3. If we blow-down one of
the (—1)-components of G,,, the (—2)-component intersecting it becomes a (—1)-
component on the contracted surface. Thus, we can repeat this process successively.
We need to contract n,, — 2 components that do not intersect the section H. Since

we assume that H intersects a,,y,, we can do this by blowing-down a chain of ;

components starting with o, o and a chain of n,, — k; — 2 components starting with

Uy, n,,-1- This iterative process yields a fiber of type Ay (see Figure 1).

k; components Ny, —k;—2 components
Qv;,0 Qv ki Qvyny,—1

l contraction

o0—0
Figura 1 — Blowing-down a fiber of type A,, to a fiber of type A,

Let G, be a fiber of type D,,, with n > 3. Since we assume H intersects the
component 3, o, we can similarly blow-down a chain of n,, — 2 components starting

with By, n,,-1, reaching a fiber of type A, (see Figure 2).
5 0 N4, —2 components
Wy,

511)1',1

l contraction
0—o0
Figura 2 — Blowing-down a fiber of type D,, to a fiber of type A,

Applying these blow-downs to all reducible fibers of ¢, we reach a conic
bundle ¢g: Ry — P! in which all reducible fibers are of type As. Therefore, ¢y is a

standard conic bundle. O

Proposition 2.3.7. Let ¢: R — P! be a conic bundle over a relatively minimal

rational elliptic surface and H a section of p. The following hold.

i) There is a free basis of NS(R) given by

B = <G> Oév1,17 7051)1,111,1-17 7av5,17 aav(;,nvé-l:

H7 ﬁwl,lu 75w1,nw1—17 75@(15,17 ) ﬁwg,nw€—1>'

i1) The canonical divisor of R is given by

N, -

1) § ny-l € 1
Kp=—2H+ (3 ki+ H*=2)G + > (> (Ihi—jl = ki) + D( Y 5Buns)-
j=1

=1 i=1 gj=1 =1



2.8. Conic bundles on rational elliptic surfaces 57

Demonstracao. Let n: R — Ry be the contraction to a standard conic bundle in
Proposition 2.3.6. For each reducible fiber with n components, n — 2 components are
contracted. Thus there are S22_, (n,,—2) + 35_; (n,, —2) individual contractions. We

can decompose 7 as

=T me 20 " OT 10O 1 O Ty ne-20 " O The,1,

where 1,,; (respectively n,,;) is the j-th contraction of a component of G,
(respectively G,,). These maps correspond to blow-ups with the contracted
component as the exceptional divisor. Theorem 2.3.4 gives us a free basis of NS(Ry)
and the canonical divisor Kg,. In what follows, we apply basic properties of blow-ups
(see (BEAUVILLE, 1996, Proposition I1.3)) to each of the maps n,, ; and n,, ;.

i) The image of H by 7 is a section of the conic bundle yy: Ry — P!. Indeed,
by Proposition 2.3.6, the contracted divisors do not intersect H. To simplify notation,
we also refer to this section as H. For each fiber G,,, all of its components are
contracted by 7, except for a,,r, and o, k+1. Similarly, for each fiber G,,, all
components are contracted except for 3,, o and 3,, 1. We also refer to the image of
these components in Ry by the same notation, and to the fiber class of ¢ by G.
Since H intersects the components «,, , and 3, 0, we know by Theorem 2.3.4 that
NS(Ry) is generated by the free basis

<G7 Ha avl,ki—i-la cee av57k5+17 5w1,17 (R /8w5,1>-

By (BEAUVILLE, 1996, Proposition I1.3.(iii)), NS(R) is generated by by the
pullback of the basis of NS(Ry) and the exceptional divisors of the blow-ups 7y, j, M, ;-
When k; = 0 for all i = 1,...,4, this is equal to B and we are done. Otherwise,

we write a,, o in terms of the basis B as G—au, 1 —. . .—Qu, n,.-1, S0 B generates NS(R).

ii) By Theorem 2.3.4, the canonical divisor of Ry is given by
é €
Kpy=—2H+ (H* —=2)G+Y_ appr1 + O Bui-
i=1 i=1

We obtain Kg by applying (BEAUVILLE, 1996, Proposition I1.3.(iv)) succes-
sively for each individual blow-up 7, ;, 7w, ;- Firstly, notice that since the section H
and a general fiber G do not intersect any of the exceptional divisors, their pullbacks

by any 7., j, Nw,,; are given by only their strict transforms. Therefore, we focus on
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calculating the pullbacks on v, x,+1 and By, 1, as well as the exceptional divisors
introduced by each blow-up. We can do this fiber by fiber.

We start with a fiber ¢y (w;). The map, 1, 1 is centered at a point of By, 1,

and its exceptional divisor corresponds to 3,, 2. Thus, we calculate

T];,L,l(/ﬁwi,l) + ﬁwi,Q = Bwi,l + 2Bwi,2-

Subsequently, the j-th blow-up 7,, ; is centered at the component 3,, ;. Applying
this for all j up to n,, — 2, we conclude the part of K supported in G, is equal to

N, -

1
Z jﬁwi,j-
j=1

For a fiber ¢y 1(vi), the blow-up 7,, 1 is centered at o, r,+1 With exceptional

divisor corresponding to a, r,4+2. We calculate

*
n'Uz‘,l(OéUiyki‘i’l) T Qo k42 = Qo ki+1 T 2av¢,ki+2'

Subsequently, for j = 1,...,n,—k;—2, the blow-up 7,, ; is centered at a, x,+;. Taking

their pullbacks successively, we obtain
ng-ki-1
Z I, kei+j -
j=1

The blow-up 7., n,-k,-1 is centered at oy, x,, which is not a component in the canonical
divisor. Therefore we only add the exceptional curve ay, y,—1. For j =0,...,k; — 1,

the blow-up Noi o -ki-14 18 centered at a, ,—;, and we conclude that the part of Kp

supported in G, is equal to

ki ni-ki-1 nvi'l
Zjavi,k’i-j + Z javm’%-ﬂ' = Z |ki_j|avi7j'
In order to write K in terms of the basis BB, we substitute
ki, 0 = ki(G — a1 — .. — ny 1)

Thus, we obtain the result. O

2.3.2  Mordell-WEeil ranks of rational elliptic surfaces via conic bundles

Let m: R — P! be a rational elliptic surface over and ¢: R — P! a conic
bundle over k. In this section, we relate the rank r of £(k(T)) to the number 4 of
fibers of type A, of ¢. Firstly, by Corollary 1.2.4 and Proposition 2.3.2, we know
that both r and § are at most 8. The following proposition shows another way in

which these numbers are related.
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Proposition 2.3.8. If r =8, then = 8.

Demonstragao. If r = 8, then by Corollary 1.2.4 7 has no reducible fibers. Consequen-
tly, we can use Proposition 1.2.3 to conclude that there are no rational (—2)-curves in
X. By Theorem 1.2.11, every reducible fiber of ¢ is of type As, so using Proposition
2.3.2 we obtain § = 8. O

In what follows, we prove that § > r. We start with a useful definition.

Definition 2.3.9. Let F, be a fiber of 7: R — P!. Then, we define

0, := #{O irreducible component of F,| © is a fiber component of ¢}.

Before the main result, we prove the following Lemmata.

Lemma 2.3.10. Let F, be a fiber of m: R — P, and let m, be its number of

irreducible components. Then, £, < m, — 1.

Demonstragao. By Definition 2.3.9, its clear that £, < m,. Suppose that for a fiber
F, we have £, = m,. Then, since every component of F, is a fiber component of ¢,
we have F, - G = 0. This is not possible, since by adjunction G - (—Kpg) = 2 and by
Proposition 1.2.3, —Kr = F, where F is the fiber class of . O

Lemma 2.3.11. We can write the sum of £, over every v € P as follows:

0 €
Do le=2 (o, —2) + ) (nw, — 1)
veP! i=1 i=1
Demonstrag¢io. By Proposition 1.2.3, every (—2)-curve in R is a fiber component of

7. Therefore,

> 4, = #{0O irreducible component of a fiber of p| ©% = —2}.

vePL

We obtain the result by the classification in Theorem 1.2.11 (see Table 3). O

Lemma 2.3.12. We can write the difference § — r as follows:

b—r=>Y (m,—1—10,).

vePL

Demonstracao. By algebraic manipulation we can write

4 €
Z (n,—1)=4d+ Z<”v —2)+ Z(nw —1).

veP! i=1



60 Capitulo 2. Conic bundles and Mordell-Weil ranks of elliptic surfaces

Then, Lemma 2.3.11 yields
dng—=1) =68+ > L,
veP! veP?
By Proposition 2.3.2 and Corollary 1.2.4, we have
b+ > ly=8=r+> (m,—1).
vePl vePl

Rearranging, we obtain the result. O

With this, we are ready to prove the following.

Proposition 2.3.13. Let R be a rational surface with an elliptic fibration © of
Mordell-Weil rank v over k. Let ¢o: R — P! be a conic bundle with & fibers of type
A,. Then, 6 > r.

Demonstragdo. Applying Lemma 2.3.10, we have
by <Y (my —1).
veP! veP!
Thus, Lemma 2.3.12 yields
o—r=>» (my—1—1¢,)>0.
veP!

]

Remark 2.3.14. Notice that Proposition 2.3.8 is a special case of Proposition 2.3.13.

2.4 Conic bundles via Weierstrass Equations

In this section, we study the elliptic curves £ over k(7") defined by Equation

2.1, with a conic bundle structure induced by Equation 2.2 (see Section 2.1).

y? = az(T)2® + ax(T)2* + ay(T)z + ao(t), (2.1)
y* = A(z)T? + B(z)T + C(x). (2.2)

Let R be the Kodaira-Néron model of £, m: R — P! the elliptic fibration and
¢: R — P! the conic bundle determined by Equation 2.2. Denote the number of fibers
of ¢ of type A,, by 0 and of type D,, by €. We follow Notation 2.3.1 for the components
of the reducible fibers of ¢. Recall that each root 6 of Aconic(z) = B(x)* —4A(x)C(x)
determines a pair of points Py, — Py € E(k(T)) (see Equation 2.3).
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2.4.1 The fiber types of a conic bundle on a rational elliptic surface

Let ¢: R — P! be the conic bundle determined by Equation 2.2. In what
follows, we determine the singular fibers of ¢ and their respective types, as classified
in Theorem 1.2.11.

Proposition 2.4.1. Let Aoppic(z) = B(z)? — 4A(2)C(x), and for every 0 € k,
let Gy := @~ 1([0:1]). Then, Gy is singular if and only if Anic(6) = 0. Moreover,
assuming viz—g)(Aconic) = n — 1, the following hold.

1. If A(0) # 0 or C(0) # 0, then Gy is of type A,.

2. If A(0) = C(0) =0, then Gy is of type D,.

Demonstragio. Firstly, assume A(#) # 0. Then, applying the change of coordinates

T=T — 2?4(3), we obtain the following equation.

= A - Seels)

Testing by partial derivatives, the point y = 7" = 0 is singular in the
special fiber at (z — 0) if and only if Aconic(0) = 0. If vz_g)(Aconic(x)) = 1, then
y=T =x—0 =0 is regular in X (see (LIU, 2006, Corollary 4.2.12)), and Gy
is of type A, composed of the two lines y = \/mT’ and y = —\/IH)T’. If
V(e—0)(Aconic(®)) = n —1 for n > 3, then the point y = 7" = x — 0 = 0 is a singularity
of type A,,_5 (see (REID, , Table 1)). Then, Gy is of type A,, with two components
coming from the lines y = MT "and y = —WT’ and n — 2 components in
the resolution of the singularity at y =T1" =2 — 6 = 0.

Assuming A(f) = 0 and C(f) # 0, we can apply the change of coordinates
T =1/u, y = y'/u, arriving at the equation

(y)? = C(x)u® + B(z)u + A(z).
Thus, the type of Gy follows by the previous method.
Finally, assume A(f) = C() = 0. Then, Aconic(x) = B(z)% If B(0) # 0,

then the special fiber at (x — ) is smooth. Otherwise, the special fiber is a non
reduced curve given by y? = 0. By the classification in Theorem 1.2.11, we know
that Gy is a fiber of type D,, for some n > 3. By the resolution of the special fiber,
n = V(z—0)(Aconic) + 1. []
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Notice that Proposition 2.4.1 does not determine the type for the fiber at
infinity. In order do this, we perform the change of coordinates z + 1/s, y = ¢//s?,

obtaining the following equation.

y?* = A(s)T? + B(s)T + C(s), (2.8)
)

where A(s) = s*A(1/s), B(s) = s*B(1/s), C(s) = s*C(1/s). Define A(
5% Aconic(1/5). Since A, B and C have degree at most 3, we know A(0) = B(0) =
C(0) = 0. An immediate application of Proposition 2.4.1 to Equation (2.8) yields

S

the following.

Proposition 2.4.2. Assume vs(A) = 8 — deg(Aconic) = n — 1. Then, the fiber at
infinity of ¢: R — P is of type D,,.

A consequence of Proposition 2.4.2 is that not every conic bundle on a rational
elliptic surface can be described by Equations 2.1 and 2.2: see Example 1.2.8 and
1.2.12.

Remark 2.4.3. Notice that we can recover Proposition 2.3.2 by counting the number

of components of each reducible fiber in Propositions 2.4.1 and 2.4.2.

2.4.2 The defect of R and the rank of £ over k

Let &€ be an elliptic curve over k(T') defined by Equation 2.1, 7: R — P! its
Kodaira-Néron model and ¢: R — P! the conic bundle defined by Equation 2.2. In
what follows, we investigate when the rank r of £ over k(7)) is equal to the number

0 of fibers of type A,, of ¢. We use the following definition.

Definition 2.4.4. The defect of £ is defined as the number

Di(&) =6 —r.

By Proposition 2.3.13, Df(€) > 0 for any £ defined by Equation 2.1. Since the
rank 7 can be determined through a combination of Tate’s Algorithm (see Theorem
1.1.12) and the Shioda—Tate formula (see Corollary 1.1.18), and ¢ can be determined

by Proposition 2.4.1, we can always calculate the defect of &£.

Example 2.4.5. Let R be the rational elliptic surface and ¢: R — P! the conic

bundle given by the following equation.

v’ = (2 — )T +2° — o +4.
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By Tate’s algorithm, the elliptic fibration has a single reducible fiber of type I;, thus
by the Shioda—Tate formula, r = 2. Applying Proposition 2.4.1, ¢ has two fibers of
type As. Then, 6 =2 and Df(E) = 0.

In what follows, we apply the theory of Section 2.3 to 7: R — P! and
0: R — P Let Gy,,...,Gy. be the fibers of type D, for some n > 3. Since by
Proposition 2.4.2 the fiber at infinity is of type D,,, we assume without loss of
generality that it is G,,,. Let (O) be the zero-section of 7: R — P'. By Equation 2.1,
(0) is contained in G, . Since (O)* = —1, we conclude that (O) = By, n,,,-1-

Proposition 2.4.6. Let G be the class of a fiber of p: R — P!, Then, G € Triv(X).

Demonstragao. The fiber class G is represented by G,,,, and we write

Gw1 = 5w1,0 + ﬁwl,l + 2ﬁw1,2 + -+ Qﬂwl,nwlfQ + 2(0)

Since B, is a (—2)-curve for j =0,1,...,n,, — 2, they are all fiber components of

7. Therefore, Gy, € Triv(R). O

By Proposition 1.2.3, the (—1)-components of singular fibers of ¢ are sections
of 7, so they correspond to k(T)-points of £. We use the following notation according
to the type of fiber of p. For G, a fiber of type A,, , we write a, 5, -1 = (F;) and
Q0 = (P). For Gy, a fiber of type D,,, , we write By, n,, 1 = (Qi).

Corollary 2.4.7. In E(k(T)), P! = —P; for everyi =1,...,6, and [2]Q; = O for

everyi=1,...,¢.

Demonstragio. We can write G, = (F;) + (P/) mod Triv(R), since a, ; is a (—2)-

curve for j = 1,...,n; — 2. Therefore, by Proposition 2.4.6, (P;) + (P/) € Triv(R).
Under the isomorphism in Theorem 1.1.17, we deduce P; & P/ = O. Doing the same

for G,,, we have 2(Q;) € Triv(R), so [2]Q; = O. O

Notice that Corollary 2.4.7 is only true when the conic bundle ¢: R — P! is
induced by Equation 2.2. This agrees with the explicit expression for k(T')-points
induced by roots of Aconic(x). Indeed, if G,, is a fiber of type A,,, then by Proposition
2.4.1, it is equal to Gy for some @ € k such that A(f) or C(f) are non-zero. By
Equation 2.3, the points Py and —F, are on the line x = #, so they correspond
to the (—1)-components of G,,. We can assume without loss of generality that P,
corresponds to Fy. Similarly, if G,,, is a fiber of type D,,, then it is induced by a root
6 of Aconic such that A(f) = C(0) = 0, so by Equation 2.3, Py is a point of 2-torsion
in £(k(T)) corresponding to Q;.
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Definition 2.4.8. Let S C £(k(T')) be the set {P,..., Ps}, M the subgroup of

E(k(T)) generated by S and L the free Z-module generated over S.

There is a natural surjection ¢: L — M and we have an exact sequence

0—>ker¢—>Li>M—>O. (2.9)

The elements of ker ¢ are equivalent to linear relations between Py, ..., Ps in

E(K(T)).

Theorem 2.4.9. The rank of ker as a Z-module is equal to Df(E).

Demonstragio. Let z = rank(ker). By the exact sequence (2.9), we know z =

d—rank M. Since M is a submodule of E(k(T)), rank M < r. Therefore, by Definition
2.4.4,
z>6—r=DI(€). (2.10)

There are z independent linear relations

a1 |Pr @@ [a5]Ps =0,

[a.1)Pr @@ a.5]Ps =O.

Let a; = Zj-:l a; j. By Proposition 1.1.22, each linear relation corresponds to
an independent vertical divisor a;1(Py) + ...+ a;s(Ps) — a;(O). We use these divisors

to write a set of independent divisors of Triv(R):

F,(0),
avl,la CI aavl,nvl—Qa s 7av5,1a s 7av5,nué—2a

5w1,07 e 75w1,nw1-2a v 76w5,07 e 75w5,nw5-2a
ar 1 (Pr) + -+ a15(F5) — a1 (0),

a1 (P1) + -+ a.s(P5) —a.(0).

We can check that the divisors above are linearly independent by writing them in
terms of the basis B in Proposition 2.3.7. By Proposition 1.2.3, F' = —Kp, and
we write K in basis B in Proposition 2.3.7. The components «,, ; and f,, ; are

generators of B for 7 > 1, and we can write

ﬁwi,o =G — Bwi,l - ZBwiQ — 2ﬁwi,nwi—1-
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Finally, we use the correspondences (O) = By, n,,,-1 and (F;) = a,, ny,-1 for the rest
of the divisors. Therefore, we have a total of 2 4+ 30_ (n,, — 2) + X5, (M, — 1) + 2

independent divisors in Triv(R). Thus, we have

5
24 (n, — —i-z 1) + z < rank(Triv(R)) =24+ > (m
i=1

vePL

By Lemmas 2.3.11 and 2.3.12, we conclude
z < Df(€). (2.11)

By the inequalities (2.10) and (2.11), we conclude that z = Df(E). O

A direct consequence of the previous theorem is the following.

Corollary 2.4.10. The points P, ..., Ps determined by the conic bundle ¢: R — P!
generate a finite index subgroup of E(k(T)).

2.4.3 Bounds on the rank of £ over k

So far, we have worked over the algebraic closure k of the field k& over which
m: R — Pt and p: R — P! are defined. In Section 2.4.2, we have studied the relation
between r and §. In order to study the rank ry of £(k(T")), we define a number 6

which will play a similar part.

Definition 2.4.11. Let £ be a curve given by Equation 2.2. We define 9, as

5 = #{[G]  Aone(0) = 0, A(#) is a nonzero square in k(6) or " }7

A(f) = 0 and C(#) is a nonzero square in k
where [0] denotes the orbit of @ by the action of Gal(k/k).

Remark 2.4.12. Notice that by Definition 2.4.11, we can rewrite the result of
Theorems 2.2.4 and 2.2.5 as follows. If £ is a curve given by an equation of the form
2.5 and deg(A) = 0, then

bo—1 if Ax) = e Q®\ {0},

oo otherwise.

T’Q—

We know Gal(k/k) acts on NS(R) preserving the intersection product. In
particular, any automorphism o € Gal(k/k) sends a (—1)-component of a fiber of

type A, to another (—1)-component of a fiber of type A,. Thus, for any P; € S,
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we have o(P;) = £P;. For each P, € S, let [P;] be the orbit of P, by the action of
Gal(k/k). The point 3> pep, P is invariant under Gal(k/k), so it is a k(T')-point of
£.

Definition 2.4.13. Let [0;] be an orbit in the set

A(60) is a nonzero square in k() or
#{[8] : Aconic(e) = 07 ( ) . ( ) . }
A(f) = 0 and C(0) is a nonzero square in k(6)

Choose an element 0] € [6;], and let

Y= S P
Pe[Py/]
We define the set S, = {¥4,...,%;, }. Further, we define M;, as the subgroup of
E(k(T)) generated by Sk, and Ly as the free Z-module over Sy.

Remark 2.4.14. On Definition 2.4.13, different choices of 0, € [f;] may lead to
different results for ;. Specifically, let 6}, 0 € [¢;] and assume that o (P ) = — Py
for some o € Gal(k/k). Then, 3 pg| [Py P = =% pep, /] P. Notice that any linear
combination [n;]X, @ ... ® [ns, |3s, induces an equivalent linear combination for any

other choice of ¢} € [0;], switching the sign of n; if necessary.

Before our main theorem, we prove the following lemma on the subgroup Mj

of E(k(T)).

Lemma 2.4.15. Let MY be the subgroup of M (see Definition 2.4.8) invariant by
Gal(k/k). Then, M9 = M;,.

Demonstracdo. By definition, M, is a subgroup of M invariant by Galois action, so
M, C MS. Let [n1]P, @ ... ® [ng|Ps € MY. For each i = 1,...,d, the point P is
equal to Py (see 2.3) for some @ € k such that Aconic(6) = 0, and one of A(f) and
C(#) is nonzero. Assume A(6) # 0 is not a square in k(#). Then,

P, = (0,/A0)(T + £8)),

and the automorphism /A(0) — —4/A(0) takes P; to —P;. Similarly, if A(f#) = 0 and
C(0) is not a square in k(6), \/C(0) — —,/C(0) takes P; to —P;. Since we assume

[n1]| Py @ ... ® [ns] Ps is invariant under the action of Gal(k/k), we conclude n; = 0.

Now, assume A(f) is a nonzero square in k() or A(6) = 0 and C(0) is a
nonzero square in k(¢). Then, for each P € [P;] distinct from P;, we know P = +P;
for some j # i. If P; € [P], then n; = n;, and if —P; € [P], then n; = —n;. In
both cases, either (3 pejp) P) € Sk or —(Xpeip) P) € Sk (see Remark 2.4.14). Thus,
[n1]PL @ ... ® [ns]Ps € My, and we conclude M, = MY. O
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There is a natural surjection 1 : L, — My, and we have an exact sequence

0 — ker oy — Li 25 M — 0. (2.12)

We use this exact sequence to prove our main result.

Theorem 2.4.16. Let 1y be the rank of E(k(T)). Then, 0, > i, > 6 — Df(E).

Demonstragio. By the exact sequence 2.12, we have ¢ = rank M}, + rank(ker ¢y,).
Since by Lemma 2.4.15 Mj, is a finite index subgroup of £(k(T')), we know rank(My,) =
rx. On the other hand, each linear relation between points of Sy, is a linear relation
between points of S, so by Theorem 2.4.9, we have rank(ker ¢;) < Df(E). This proves
the result. ]

Remark 2.4.17. Notice Theorem 2.4.16 is a generalization of Theorem 2.2.6 to the
context of any number field k, and allowing az(7") # 1 in Equation 2.1.

2.5 Computations of the rank

Let € be a curve given by Equation 2.1, m: R — P! its Kodaira—Néron model
and ¢: R — P! the conic bundle induced by Equation 2.2. In general, Theorem
2.4.16 shows that calculating 9, determines a range of possible values for r;, but not
ri itself. In this section, we explore cases in which we can determine r; explicitly.
Specifically, we recover Theorems 2.2.4 and 2.2.5 in the more general context of

number fields.

2.5.1 Computation of Df(E)

Let G4 be the fiber at infinity of the conic bundle ¢: R — P!. By Proposition
2.4.2, G, is of type D, for n > 3. If n = 3, then there are 2 distinct reducible
fibers of ™ with components in common with G, (see (COSTA, 2024, Theorem 5.2)).
If n > 4, only one reducible fiber has a component in common with G... In what
follows, we prove that the type of G, and the Kodaira types of the fibers of m with

components in common with G, are sufficient for determining the defect Df(&).

Theorem 2.5.1. Let £ be a curve given by Equation 2.1, m: R — P! its Kodaira—
Néron model and ¢: R — P* the induced conic bundle. Let G, be the fiber at infinity

of ¢ of type D,,.

i) If n = 3, then DI(E) is equal to the number of fibers of type IV or I,,, m > 3,

which have an irreducible component in common with G .
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it) If n >4, then Df(E) < 1. Let F, be the fiber of m with components in common
with Goo. In particular, Df(E) =1 in three cases:

1. if G is of type Dy and F, of type I, for m > 5;
2. if G s of type D5 and F, of type I ;
3. if G 1s of type Dg and F, of type IV™*.

For all other configurations of G, and F,, Df(€) = 0.

Demonstragao. For each fiber F), of m, recall that we define ¢, as the number of
components of F, which are also components of a fiber of ¢ (see Definition 2.3.9).
Then, by Proposition 2.3.12 and Definition 2.4.4,

DE(E) = > (my,—1—10,). (2.13)

veP!

Let F, be a fiber of m which has no components in common with G,. If F,
is not reducible, then m, = 1 and ¢, = 0. Assume F, is reducible and let ©, be
its component intersecting the zero-section (O). We can calculate O, - Goo = 2, SO
O, is a 2-section of ¢. On the other hand, the remaining m, — 1 components of
F, do not intersect G, so they are fiber components of ¢. Thus, ¢, = m, — 1 and
my — 1 — £, = 0. Therefore, in order to determine Df(E), we just need to determine

¢, for the fibers F,, which have a component in common with G..

i) Let n = 3 and F,, F}, be the fibers of © which have components in common
with Go. Let 0,0, 00 be the components of F,, F, intersecting (O), respectively.
We can write Goo = O40 + Opo + 2(0).

If F, is of type IV or I,,, m > 3, then O, intersects ©,1 and O, ,,, ,. Since
these components intersect G, they are sections of ¢. On the other hand, the
remaining m, — 3 components O, ..., 4 m,-2 do not intersect G, so they must be
components of a fiber of . Thus, ¢, = m,—2. If F, is of one of the remaining Kodaira
types, then O, only intersects ©, ;. The other components O3, ..., 04,1 do not
intersect G, so they are fiber components in ¢. Thus, ¢, = m, — 1. We determine

{y, by the same arguments. Substituting every ¢, in Equation 2.13, we obtain the result.

ii) Let n > 4 and F, be the fiber of m which has a component in common
with G. For each n, the Kodaira type of F, is restricted by the intersection pattern
on the (—2)-components of G,. We prove the result through the following steps for

every possible combination of types of G, and Fj,.
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1. Determine which components of F, are also components of G .

2. From the remaining components of F},, we determine which ones intersect G .

These are section (or multi-sections) of ¢.

3. The remaining components do not intersect G,. Therefore, they are fiber

components of .

With this, we determine ¢,, so we can calculate Df(£) = m, — 1 — ¢,. We do not
show these steps explicitly, only the final results in Table 4. The first two columns
show the types of G and F,. The third column shows the components of F, which
are also fiber components of ¢, and the fourth column shows the components which
are sections or multi-sections of ¢, following the notation in (SCHGTT; SHIODA,
2019, Theorem 5.12). Finally, the fifth column shows the value of Df(£) for each

combination. O

Goo F, fiber components of ¢ (multi)-sections of ¢ | Df(E)
Dy Iy CINCINCH O, 0
D4 ]m25 @0, @1, @3, ey @m_g, @m—l @2, @m_g 1
Ds Iik @0,@1,@4,@5 @2,@3 1
Dy ]:n>2 @07-”;@57@7;-”7@m+4 @6 0
Dg | IV* Oy, O, 03,04, 64 01,05 1
D, | IIT° ©0,....0,.0,,0; o; 0
Dy | IT° ©0.0,,.... 05 o, 0

Do | T 00,02, ..., o, 0

Tabela 4 — Df(€) for each configuration of G, and F,

In particular, Theorem 2.5.1 shows that Df(€) < 2 for every curve & given
by Equation 2.1.

2.5.2  Families of curves with Df(€) =0

If £ is a curve given by Equation 2.1, then by Theorem 2.4.16, we know
Ok > 1 > 0 — DI(E). In general, this is not enough to determine 7, explicitly. The
obvious exceptions are the examples in which Df(€) = 0. In this section, we use
Theorem 2.5.1 to find the families of curves for which every member has Df(£) = 0,

and thus r; = .

We start by looking at the family of curves given by Equation 2.1 in which

a3(T') is non-constant.
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Theorem 2.5.2. Let € be a curve given by Equation 2.1, and y(T) := A (T /a3(T)?.
Assume that deg(as) > 1, deg(y) = 8 and that the resultant Res(as,y) is nonzero.
Then, 1, = k.

Demonstragao. Firstly, we put Equation 2.1 in Weierstrass form by applying the
coordinate changes x — x/a3(T') and y — y/a3(T'). After clearing the denominator,
we have

y? = 2% + ay(T)2* + a1 (T)as(T)z + ao(T)as(T)>.

The discriminant of £ is given by
Aai(T) = —27adaz + 18agayazal + ajasa3 — dagasa3 — daia;
= a3(—27a2a; + 18apaiasas + aia; — dagas — 4asas)

= a3(T)y(T).

Let G4 be the fiber at infinity of the conic bundle ¢: R — P!. Recall that by
Proposition 2.4.2, G, is of type D,, where n = 9 — deg(Aconic)-

Assume a3(T) = p(T — q), where p € k* and ¢ € k. Then, writing £ in the
form of Equation 2.2, we have deg(A) < 2, deg(B) = 3. Thus, deg(Aconic) = 6 and
G is of type Ds. There are two distinct fibers of m: R — P! which have components
in common with G, namely, the fiber F, at 7' = ¢ and the fiber at infinity F,. We
can use Tate’s Algorithm to determine the fiber types of I, Fio. Since Res(as, ) # 0,
q is not a root of y(7"), so Fy is of type I5. Similarly, since deg(y) = 8, Fi is of type
1. By Theorem 2.5.1, Df(&) = 0.

Assume a3(T) = p(T'—q,)(T—q2), where p € k* and ¢; € k. Calculating Aconic,
we obtain the lead coefficient in z equals p*(q1 — q2)%. If ¢1 # g2, then deg(Aconic) = 6
and G is of type Ds. The fibers F, and Fj, have components in common with G,
and by Tate’s Algorithm both are of type Ir. If ¢; = ¢o, then deg(Aconic) < 5 and
G is of type D,, for some n > 4. By Tate’s Algorithm, the fiber Fj, is of type 1.
By Table 4, G, is of type Dy. In both cases, by Theorem 2.5.1, Df(£) = 0, so by
Theorem 2.4.16 7, = y. O

Notice that the conditions imposed in Theorem 2.5.2 on the coefficients a;(T)
exclude only a Zariski closed set. In this sense, this theorem implies that in the

family of curves given by Equation 2.1, a general member &£ has ry = k.
Example 2.5.3. Let £ be given by

y? = Tx® + (T? + aT + b)x* + (cT* +dT + e)x + (fT* + gT + h) (2.14)
= (@* +co+ )T?* + (2* + az® + dx + )T + (ba* + ex + h),
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for a,b,c,d,e, f,g,h € k. The condition Res(as,7y) # 0 is equivalent to
7v(0) = b*(e* — 4bh) # 0. The condition deg(vy) = 8 is equivalent to the coefficient of

v in T® being nonzero, that is, > — 4f # 0. Under these assumptions, rj, = dj.

In what follows, we apply Theorem 2.5.1 to recover previous results stated in
Section 2.2.

Proposition 2.5.4. Let £ be a curve given by the following equation, for
A, B,C,D,a,b,c€k

E: y? =2°T* +29(x)T — h(x), where (2.15)
g(z) =2 +ax® + bz +c, c#0;
h(z) = (A—1)2* + Bx* + Cz + D.

Assume A opnic(x) has 6 distinct nonzero roots which are perfect squares over k. Then,

Tk:6.

Demonstragdo. Firstly, notice that writing £ in the form of Equation 2.2, we have
A(z) = 2. Since by assumption every root of A is a perfect square, we have that
0 = 6. By Proposition 2.4.2, the fiber G, has type D3, and by Tate’s Algorithm,
the Kodaira-Néron model 7: R — P! has two reducible fibers of type I,. Therefore,
Theorem 2.5.1 tells us that Df(€) = 0. Applying Theorem 2.4.16, we obtain the
result. O

This result recovers the calculation of the rank in Theorem 2.2.3. We turn
next to curves in which a3(7) is constant in Equation 2.1 and A(x) = 0 in Equation
2.2.

Proposition 2.5.5. Let £ be a curve given by
E: y* = B(x)T + C(x), (2.16)

where deg(B) < 2 and deg(C) = 3. Then, ry = .

Demonstragio. Let G4, be the fiber of ¢ at infinity. Since Aconic() = B(z)?, by
Proposition 2.4.2, G, is of type D,, with n =9 — 2deg(B).

Assume deg(B) = 0 or deg(B) = 1. Then G, is of type Dy or D7, respectively.
By Theorem 2.5.1, Df(£) = 0 irrespective of the type of fiber of m which has

components in common with G, (see Table 4).
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Assume deg(B) = 2. Then, G, is of type Ds. By Theorem 2.5.1, Df(£) = 1 if
and only if G, has components in common with a fiber of 7 of type I7. Writing £ in
the form of Equation 2.1, we have that a3(7) is a nonzero constant, and deg(a;) < 1
for 1 =0, 1,2. Then, deg(Ae) < 3. By Tate’s Algorithm, we deduce 7 has a fiber of
additive reduction with at least 7 components. Thus, G, has components in common
with a fiber of type I, for m > 2, so Df(£) = 0.

Applying Theorem 2.4.16, we deduce that r, = dj. O

This result generalizes Theorem 2.2.4 to a general number field k.

2.5.3 Families of curves with Df(£) > 0

In this section we study families of curves £ given by Equation 2.1 for which
Df(€) > 0. Then, Theorem 2.4.16 is not enough to determine the rank 7. We explore

cases in which we can use additional information to determine 7y,.
Proposition 2.5.6. Let £ be a curve given by
y? = puT? + B(z)T + C(x), (2.17)

where p € k*, deg(B) < 2, deg(C) = 3. Then, Df(€) = 1.

Demonstragio. By Proposition 2.4.2, the conic fiber G at infinity is of type D,
where n = 9 — deg(Aconic). Let F, be the fiber of 7 with components in common

with G.

Assume deg(B) < 1. Then G is of type Dg. By Table 4, F, is of type IV*
or I7. Writing £ in the form of Equation 2.1, we have deg(ag) = 2, deg(a;) < 1 and
deg(ay) = deg(as) = 0. Therefore, deg(Aqy) = 4, and by Tate’s Algorithm, 7 has
fiber of additive reduction at infinity with 7 components. Thus, F, is of type [V,
and by Theorem 2.5.1, Df(€) = 1.

Now, assume deg(B) = 2. Then G, is of type Dj;, and F, is of type I, for
some m > 0. Similarly, writing £ in the form of Equation 2.1, we have deg(ag) = 2,
deg(a) < 1, deg(ag) = 1 and deg(as) = 0. Therefore deg(Aey) = 5 and by Tate’s
Algorithm there is a fiber of additive reduction at infinity with 6 components. Thus
F, is of type I} and by Theorem 2.5.1, Df(€) = 1. O

In this situation, Theorem 2.4.16 is not enough to determine the rank r; of £.
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Proposition 2.5.7. Let £ be a curve given by Equation 2.17. Then,

0 — 1 ifMEk2,

Ty =

Demonstragio. For every 6 € k such that Aonic(6) = 0, let Py be the induced point
in £(k(T)) (see 2.3). Recall from Definition 2.4.8 that S is the set of points Py. By
(BATTISTONI; BETTIN; DELAUNAY, 2021, Proposition 12), we know that

> [nglPy =0 € E(K(T)), (2.18)
0:A(0)=0

where 1; = V(;—g)(Aconic). Notice that since Agonic(2) € k[z], we have that ng = ng
if ¢ € [A]. By Proposition 2.5.6, Df(£) = 1. Therefore, Theorem 2.4.9 implies
that Equation 2.18 is the only linear relation between points of S, up to scalar

multiplication.

Assume p is a square in k(). Then, /i € k(0). For any o € Gal(k/k), we

have
o(Bn) = (0(0), (T + 2G0)) = Py if o € Gal(k/k(\/)),
(0(0), —yi(T + 2GO)) = — Py if o & Gal(k/k(/))-

If ;1 € k2, then k(y/m) = k. Thus, for each X; € Sy, we can write X3; = Y g cpq) Por
for some 6 € k such that Auic(f) = 0. Then, Equation 2.18 determines a linear
relation between points of Si. By Theorem 2.4.16, r, = o, — 1.

If 1 € k\ k?, then for each ¥; € Sy, ¥; is the sum of Py for half of 6 € [6],
and — P for the other half. Then, any linear relation between point of Sy induces
a linear relation between points of S strictly different from Equation 2.18. Since
Df(€) = 1, this is not possible, so ry = dj. ]

Notice that this result generalizes Theorem 2.2.5 to any number field.

In what follows, we go back to curves given by Equation 2.16. We see that if
we allow B(x) to be a polynomial of degree 3, then the result of Proposition 2.5.5 no

longer holds in general.
Proposition 2.5.8. Let £ be a curve given by

E: y*=B(x)T + C(x), (2.16)
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where B(z) = 2% + ax® + bx + ¢ is a separable polynomial of degree 3 and C(z) =
AB(z) +p, for N € k, p € k*. Then, DI(€) =1, and

0 — 1 if p € K2,
o ifpeEk\ KL

T =

Demonstragio. Since deg(Aconic) = 6, the fiber G, of ¢ at infinity is of type Ds.
Writing £ in the form of Equation 2.1, we have

y? = (T + N2 + a(T + Na® + (T + N)a + (T + \) + p.

The fibers of © which have components in common with G, are the fiber F_, at
T = —X and F at infinity. We can calculate that vz (Aen) = 4, and since (7' + )
divides ay, by Tate’s Algorithm, F_ is of type I'V.

On the other hand, by calculating the lead coefficient of A (1), we have that
deg(Aen) = 6 if and only if B(z) is separable. Then, by Tate’s Algorithm, F, is of
type I§. Thus, by Theorem 2.5.1, Df(£€) = 1.

Let 61,05, 03 denote the roots of B(#). Then, the point corresponding to 6; in
E(K(T)) is P; = (0;, /1t). By this equation, we have P, & P, ® Py = O. We prove the

formula for r; by using the same arguments as in Proposition 2.5.7. O]

Finally, we return to Example 2.5.3. Modifying the equation, we provide an

example of a family of curves with Df(€) = 2.

Example 2.5.9. Let £ be given by
y* =Ta* + (T? + aT + 1)2? + (2bT% + T + 2d)x + (V’T? + eT + d?)

for a,b,c,d,e, f € k, and let (T) = Aa(T)/T?. By our choice of coefficients,
deg(y(T")) <7, and v(0) = 0. The fibers Fy and F, are the fibers of m which have
components in common with G, and by Tate’s algorithm, both are of type I, for
some m > 3. By Theorem 2.5.1, Df(£) = 2.
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3 Elliptic fibrations on K3 surfaces with
non-symplectic automorphisms of prime

order

3.1 Introduction

This chapter is based on the paper (MEIRA, 2024), which was published on
Mathematische Nachrichten.

Let k be an algebraically closed field such that char(k) = 0. In this chapter,
our main objects of study are K3 surfaces X with a non-symplectic automorphism
o of prime order p > 3. In particular, we study the elliptic fibrations 7: X — P!
on such a K3 surface, and classify them in different ways. We do this through
two main approaches. Firstly, we generalize the work of Garbagnati and Salgado
in (GARBAGNATTI; SALGADO, 2019), (GARBAGNATI; SALGADO, 2020) and
(GARBAGNATT; SALGADO, 2024), in which the elliptic fibrations of a K3 surface
X are classified with respect to a non-symplectic involution ¢ according to the action
of ¢+ on its fibers. We show that this classification, as well as its main results, can be

generalized to non-symplectic automorphisms of higher prime orders.

The Néron—Severi and transcendental lattices of every K3 surface X admitting
a non-symplectic automorphism o of order 3 acting trivially on NS(X) were classified
by Artebani, Sarti and Taki on (ARTEBANI; SARTT, 2008), (TAKI, 2008). We make
use of this fact to apply the Kneser—Nishiyama method to determine the AD E-types
of every possible elliptic fibration in one of these surfaces. We show that we can

classify these elliptic fibrations with respect to the automorphism o.

3.1.1 Chapter structure

Section 3.2 deals with a few preliminary results. In 3.2.1 we give a brief
summary of the distinct ways of classifying elliptic fibrations on K3 surfaces. In 3.2.2
we describe the Kneser—Nishiyama method for determining the AD E-types of elliptic
fibrations on K3 surfaces. Finally, in 3.2.3 we present the classification of elliptic

fibrations of X with respect to o a non-symplectic automorphism of prime order.

In Section 3.3, we study elliptic fibrations on K3 surfaces with a non-symplectic
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automorphism of order 3. In 3.3.1 and 3.3.2 we determine properties of elliptic
fibrations m: X — P! of type 1 and 2 with respect to o, respectively. In 3.3.3 we
relate the different types of elliptic fibrations of X with respect to ¢ and different
classes of linear systems on the minimal resolution R of the quotient X Jo. In 3.3.4,
we use the induced linear systems to determine explicitly equations for the generic

fibers of elliptic fibrations of type 1 and 2 with respect to o.

In Section 3.4, we apply the Kneser—Nishiyama method to all K3 surfaces X
with Picard number at least 12 admitting a non-symplectic automorphism o of order
3, under the assumption that the automorphism acts trivially on its Néron—Severi
group. Table 61 shows every fibration in these surfaces, their respective AD E-types
and their Mordell-Weil groups. Sections 3.4.1, 3.4.2 and 3.4.3 show the explicit
calculations involved in the application of the Kneser—Nishiyama method. In 3.4.4,

we classify the fibrations in Table 6 with respect to the automorphism o.

In Section 3.5 we illustrate our method described in Section 3.3 by applying
it to the X3 surface. This surface was first studied by Shioda and Inose in (INOSE;
SHIODA, 1977) and Vinberg in (VINBERG, 1983), and in (NISHIYAMA, 1996),
Nishiyama presented a J)-classification of Jacobian elliptic fibrations of X35. We
exhibit Weierstrass equations for each fibration in J2(X3) (see Theorem 3.5.6, 3.5.5).

Finally, Section 3.6 deals with generalizing the results of Section 3.3 to non-
symplectic automorphisms of prime order p > 3. In 3.6.1, we determine the necessary
ramified fibers so that the base change of a rational elliptic surface by a Galois cover
of degree p becomes a K3 surface. In 3.6.2, we show that every elliptic fibration on
a K3 surace X with a non-symplectic automorphism of prime order p > 3 acting
trivially on NS(X') comes from such a base change. We use this fact to deduce the
Kodaira types of the possible reducible fibers on these elliptic fibrations, and to

determine explicit equations for their generic fibers.

3.2 Preliminaries

3.2.1 Classification of elliptic fibrations on K3 surfaces

Let X be a K3 surface. By Proposition 1.3.13, every embedding of the
hyperbolic lattice U into NS(X) induces an elliptic fibration on X. Consequently,
when NS(X) allows for multiple distinct embeddings of U, X admits multiple elliptic
fibrations. As such, it is useful to define ways in which two elliptic fibrations 7 and
7' of X are equivalent. The classifications presented here are studied in depth in

(BRAUN; KIMURA; WATARI, 2013).
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Definition 3.2.1. Let 7, 7’ be elliptic fibrations on X with respective zero-sections

s,s’. Then

i) 7 and 7’ are Jy-equivalent if there is g € Aut(P!) such that #’ = g o 7 and

s'=sog.

ii) 7 and 7’ are Ji-equivalent if there is ¢ € Aut(P!) and o € Aut(X) such that

7'=gomoocand ¥ =cosog.

The sets of elliptic fibrations on X modulo Jy and Ji-equivalence are denoted as
Jo(X) and J;(X), respectively.

Notice that if 7 and 7’ are [Jy equivalent, then they are J; equivalent by
taking idy as the automorphism. The J; classification is particularly important

because of the following theorem.

Theorem 3.2.2. On any given K3 surface X, there are finitely many elliptic

fibrations up to Ji-equivalence.
Demonstragio. See (STERK, 1985, Proposition 2.6, Corollary 2.7). ]

If 7 and 7" are Ji-equivalent, then the frame lattices W, and W, are iso-

morphic. This motivates a third type of classification.

Definition 3.2.3. Let 7,7’ be elliptic fibrations of X. We say that they are J»-
equivalent if W = W_,. The set of elliptic fibrations of X modulo Js-equivalence is
denoted by J2(X).

This definition allows us to translate the classification problem to pure lattice

theory.

Definition 3.2.4. Let L be an even lattice. The discriminant group of L is defined
as G := LY/L, where L" is the dual lattice of L. The discriminant form of L is a
map qr: G — Q/2Z, given by x +— (x,x) mod 2Z. The pair (Gp, qr) is called the

discriminant lattice of L.

Let J5(X) be the set of all even lattices, modulo isometries, with signature
(0, p(X) — 2) and discriminant lattice isomorphic to (Gns(x); gns(x))- Then, J»(X)
is a subset of J3(X).

Proposition 3.2.5. Let X be a K3 surface with p(X) > 12. Then, J5(X) = Jo2(X).

Demonstragio. See (SCHUTT; SHIODA, 2010, Lemma 12.21). ]
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3.2.2 The Kneser—Nishiyama method

Based on lattice theoretic techniques developed by Kneser in (KNESER,
1956), Nishiyama developed a method of obtaining J;(X) for K3 surfaces X with
known NS(X) and T'x (see (NISHIYAMA, 1996)). In particular, by Proposition 3.2.5,
this method determines [J5(X) when p(X) > 12. This is known in the literature as
the Kneser—Nishiyama method. In what follows we present a brief overview of it. See
(BERTIN et al., 2015, Section 4.1) or (BRAUN; KIMURA; WATARI, 2013, Section

4.1) for a similar overview.

Definition 3.2.6. A Niemeier Lattice is an even, unimodular, negative definite
lattice of rank 24.

Theorem 3.2.7. Niemeier lattices are uniquely defined by their root types up to

isometry, of which there are only 24 possibilities.
Demonstragio. See (NIEMEIER, 1973, Theorem 8.5). O

Let X be a K3 surface with transcendental lattice T'x.

Theorem 3.2.8. Let T be a lattice of root type such that rank Ty = rank T'x + 4,
Gr, = Gry and qr, = qry. Then, every W € JJ(X) can be written as o(Ty)*L,
for v: Ty — L a primitive embedding into a Niemeier lattice L. Furthermore, if
p(X) > 12, then there is an elliptic fibration 7: X — P! such that W = W, and
the following holds.

i) Let M = o(Ty) oo, Then the ADE-type of m is Moo, and isomorphic to
Wroot-

it) The rank of MW () is given by rank M — rank M.

iti) The torsion part of MW (7) is isomorphic to Moot/ Mroot, Where Mooy is the

primitive closure of Moo .
Demonstragio. See (NISHIYAMA, 1996, Section 6.1, Section 6.2). ]

The Kneser—Nishiyama method consists of the application of the previous
result to obtain J5(X). We describe it in the following steps.

1. Find a suitable lattice Ty of root type.
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2. For each Niemeier lattice L, determine every possible primitive embedding
@: Ty = Lyoot, up to actions of the Weyl group W(L) (see (BOURBAKI, 1968,
Chapter 6, Definition 1)).

3. For each embedding ¢, compute the orthogonal lattices M := o(Ty)+Lret and
the root type Moot = Wioot-

4. Compute the rank of the Mordell-Weil group, given by rank M — rank M,
and the torsion, given by Moot/ Moot -

3.2.3 Classification of fibrations with respect to a non-symplectic auto-

morphism

In (GARBAGNATI; SALGADO, 2019), Garbagnati and Salgado define a
classification of elliptic fibrations on a K3 surface in relation to a non-symplectic
involution ¢. This definition generalizes nicely to any non-symplectic automorphism
o of prime order. In this section, we reproduce this definition and show some of its

main properties. Firstly, we fix some notation.

Notation 3.2.9. Let S be a surface and ¢ an automorphism of S. We say that a
point p € S is fized by o if o(p) = p. Let C' C S be a curve. We say that C' is fized
by o if every point p € C'is fixed by o, i.e. if 7|, = ide, and C' is preserved by o if
C' is not fixed by ¢ but o(C) = C.

Definition 3.2.10. Let (X, o) denote a pair consisting of X a K3 surface, and o a
fixed non-symplectic automorphism of X of prime order p. We classify an elliptic

fibration 7: X — P! with respect to o as follows.

1) 7 is of type 1 if every F, = n~1(v) is preserved by o.

2) 7 is of type 2 if o fixes the fiber class F' in NS(X), but o is not of type 1 (i.e.
there exist distinct v,v" € P! such that o(F,) = F).

3) m is of type 3 if o does not fix the class of the fiber F' in NS(X).

Remark 3.2.11. Assume o acts trivially on NS(X). Then, in particular, o fixes the
fiber class, so (X, o) does not admit elliptic fibrations of type 3.

The following two propositions are adapted from (GARBAGNATI; SAL-
GADO, 2020, Proposition 2.5, Theorem 2.6), considering non-symplectic auto-

morphisms of any prime order. We present the proofs for completeness.
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Proposition 3.2.12. Suppose w is an elliptic fibration of type 1 on (X,0), and
o acts trivially in NS(X). Then every section of 7 is fized by o. Consequently,
rank MW (7) = 0.

Demonstracio. Let C' C X be a smooth rational curve. Since o acts trivially on
NS(X), and rational curves are unique in their class on K3 surfaces, o(C') = C'. Then,
if ¥ is a section of 7, since o acts trivially on the base of the fibration, > must be
fixed by 0. The number of curves fixed by o is finite, so rank MW (7) = 0. [

Proposition 3.2.13. Assume (X, o) admits an elliptic fibration of type 2. Then,

every curve fized by o has genus g < 1.

Demonstragio. Let m: X — P! be a type 2 elliptic fibration of (X,0), and C' C X a
curve fixed by o. Suppose C' is a multi-section of 7w. Then, C' intersects any fiber with
positive multiplicity, and the intersection points must be fixed. However, since 7 is
of type 2, there are distinct fibers F, and F), such that o(F,) = F,,, so F, does not
have fixed points. Therefore, C' must be a fiber component of 7, so g(C') < 1. n

3.3 K83 surfaces with non-symplectic automorphisms of order 3

In Section 3.2.3, we have seen how to classify elliptic fibrations of a K3 surface
in relation to a non-symplectic automorphism of prime order p. The case of p = 2
was studied extensively by Garbagnati and Salgado in (GARBAGNATT; SALGADO,
2019), (GARBAGNATTI; SALGADO, 2020) and (GARBAGNATT; SALGADO, 2024).
In what follows, we deal with the case p = 3. The choice of focusing in this order
comes from Proposition 3.3.1, in which we see that fibrations of type 1 do not occur

with respect to automorphisms of higher prime order.

3.3.1 Fibrations of type 1

Let m: X — P! be an elliptic fibration of type 1 on (X, o). Since the auto-
morphism o preserves every fiber of 7, we can consider the restriction of its action to

said fibers. This allows us to deduce properties of both ¢ and the singular fibers of .

Proposition 3.3.1. Let X be a K3 surface and o € Aut(X) a non-symplectic
automorphism of prime order p. If (X, 0) admits an elliptic fibration 7: X — P! of
type 1, then p = 2 or 3. Furthermore, if p = 3, the singular fibers of m must be of
type 15, 11,1V, IT* or IV*.
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Remark 3.3.2. This list of possible fibers for an elliptic fibrations of type 1 with
respect to a non-symplectic automorphism of order 3 is given in (OHASHI; TAKI,
1989, Proposition 3.5.(4)), with the added assumption that o fixes a curve of genus
g > 2. We present the proof for completeness.

Demonstragio. Assume (X, o) admits an elliptic fibration 7: X — P! of type 1.
Then, o acts as an automorphism of order p on each fiber. In particular, for a smooth
fiber F,, o acts as an automorphism of a genus 1 curve. By (SILVERMAN;, 1986,
Chapter X, Proposition 5.1), o corresponds with (P, a), where P is a point of F,
and « an automorphism of F), as an elliptic curve. In particular, ¢ = 7p o , where
Tp is the translation by P map. Thus, assuming o = id, we obtain that ¢ acts on X
as the translation by a section of 7. If this was true, then ¢ would be a symplectic
automorphism. Since by hypothesis ¢ is non-symplectic, we can assume « # id for
every smooth F,. Then, ¢” = id corresponds to (372 a/(P),aP), so the order of
a is p. By (SILVERMAN, 1986, Chapter III, Theorem 10.1), the only admissible
automorphism groups of elliptic curves are Z/2, Z/4 and Z/6, so p can only be 2 or
3.

If p = 3, then there is a Z/6 action on each smooth fiber of 7, and their short
Weierstrass form must be y? = 23 + B. Consequently, the J-function of 7 is constant
and equal to zero. The only types of singular fibers with J(F) =0 are I}, 11,1V, II*
and IV* (see (MIRANDA, 1989, Table IV.3.1)). O

Remark 3.3.3. If p = 2 and the quotient X /o is a relatively minimal rational elliptic
surface, the singular fibers of a fibration of type 1 were classified in (GARBAGNATT,
SALGADO, 2019, Theorem 5.3).

In what follows, we often work under the assumption that o acts trivially
on the Néron—Severi group of X. When this is the case, we obtain the following

improvement on the result of Proposition 3.3.1.

Proposition 3.3.4. Let X be a K3 surface and o a non-symplectic automorphism
of order 3 acting trivially on NS(X). If m: X — P! is an elliptic fibration of type 1
n (X,0), then m does not admit fibers of type I.

Demonstragao. By the action of o, we can write the equation for the generic fiber

of m as y*> = 23 + B(t). In this equation, we can see the automorphism o explicitly

as (z,y,t) — ((3x,y,t), where (5 = _HT“/E is the cubic root of unity. Assume 7

has a singular fiber F, of type Ij. By Tate’s algorithm, after a suitable change of

coordinates, we can write this equation as y?> = 23 + t3f(¢), where f(t) # 0 and
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F, is the resolution of the singular fiber at ¢ = 0. After blowing-up the singularity
at the origin, we obtain the equation Y? = #(X® + f(¢)), where X = z/t and
Y = y/t. This equation yields a surface with 3 A; singularities at ({/—f(t),0,0),
(G —f(t),0,0) and (¢2/—f(t),0,0). The action of ¢ is lifted to the blow-up by
(X,Y,t) — ((3X,Y,t), so the A; singularities are permuted. Thus, o permutes the
3 components of F, coming from the resolution of the A; singularities, and o acts
nontrivially on NS(X). O

When o acts trivially on NS(X), sufficient conditions for the existence of an
elliptic fibration of type 1 on (X, o) were given in (ARTEBANI; SARTI, 2008).

Proposition 3.3.5. If o acts trivially in NS(X) and fizes at least 2 curves, then
(X, 0) admits an elliptic fibration of type 1.

Demonstragio. See (ARTEBANI; SARTI, 2008, Proposition 4.2). m

3.3.2 Fibrations of type 2

We begin this section by describing a natural way to exhibit explicitly a pair
(X,0) with X a K3 surface and ¢ a non-symplectic automorphism admitting an
elliptic fibration of type 2. We do this by starting from a rational elliptic surface
7: R — P! and applying the base change by a Galois covering 7p1: P! — P!. By
resolving singularities and contracting (—1)-curves of the resulting surface R xp1 P!,
we obtain a surface X with a relatively minimal elliptic fibration 7x: X — P! The
Galois morphism on P! lifts to an automorphism of X of order equal to the degree
of 7p1. Assume that X is a K3 surface. Since the quotient by o is birational to R, by
Theorem 1.3.12 ¢ is non-symplectic. Furthermore, fibers of mx above points of P!

outside the branch locus of 71 are permuted, so 7x is of type 2 on (X, o).

Proposition 3.3.6. Let m: R — P! be a rational elliptic surface, p1: P* — P! q
cubic Galois covering ramified at a,b € P' and F,, F, the fibers of ™ above a and b.
The surface X obtained taking the base change of m by mp1 is a K3 if and only if one
of F,, Fy is of type I or IV, while the other is of type I,,I1 or I1I.

Demonstrag¢io. By the canonical divisor formula for elliptic surfaces (see (SCHUTT;
SHIODA, 2019, Theorem 5.28)), Noether’s Formula (see (BEAUVILLE, 1996, 1.14))
and Serre duality ((BEAUVILLE, 1996, Theorem 1.11)), the surface X in an elliptic
fibration with basis P! is a K3 surface if and only if its Euler number e(X) (see
(SCHuTT; SHIODA, 2019, Section 4.7)) is equal to 24. By (SCHuTT; SHIODA,
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2019, Theorem 5.31), e(X) = S yepr e(FX), where FX = 73! (v). Let u,v be points
in P! such that 7p1(v) = u. Then, the Euler number of FX is known in terms of the
Kodaira type of F, and the ramification index r(v|u) (see (MIRANDA, 1989, Table
VI.4.1)). Knowing that e(R) = Y_,cp €(F,) = 12, we obtain the result by checking
for which Kodaira types of F, and F, we obtain e(X) = 24. O

Let X be a K3 surface and ¢ € Aut(X) a non-symplectic automorphism of
order 3. In what follows, we aim to use Proposition 3.3.6 to describe the configuration
of fibers on an elliptic fibration of type 2 on (X, o). As a first step, we study the
properties of the quotient X /o.

By Theorem 1.3.12, we know X /o is rational, but in general, it is not a
rational elliptic surface. Let x € X be a fixed point of o. By Proposition 1.3.10 the

local action of ¢ around a fixed point x € X can be linearized as

A= Cé O. ,
0 ¢
—144/3
2

where (3 = is the cubic root of unity. Since o is non-symplectic, we deduce
that i =1 and j = 0, or ¢« = j = 2. In the former case, since j = 0, x is part of a fixed
curve. In the latter case, x is an isolated fixed point. Notice that by Theorem 1.3.9,
both cases are admissible. Assume z is an isolated fixed point, and let 7: X — X/o
be the quotient map. Then, by the action of A, we can infer that 7(z) is a singularity
of type 5(1,1) (see (REID, 2003)). In order to circumvent this, we can first blow-up

the isolated fixed points of o.

Proposition 3.3.7. Let ny: X — X be the blow-up of the isolated fized points of o.

Then, the following statements are true.

i) Bvery elliptic fibration 7: X — P! lifts to an elliptic fibration 7 : X = P!, and

both fibrations are isomorphic on an open set of P!

it) We can lift o to an automorphism & of X which fizes the exceptional curves of

nNx.

iii) Let R:= X /&, and 7: X — R be the quotient map. Then, R is isomorphic to

the minimal resolution ¢ of X /o, and the following diagram commutes.

T

X/

—
g <

><<7><2
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Demonstragio. i) Let [F] be the class of a fiber and ¥, the zero-section of 7 in
NS(X), and write F := % (F) and g := 1% (X0). Since a general smooth fiber of 7
does not intersect the isolated fixed points of o, the pencil |F | induces an elliptic

fibration on X, and we can choose ¥y as the zero-section.

ii) The surface X can be described locally around an exceptional divisor by
coordinates (z1, 29, t) with 2o = tz;. We define & by the map (21, 22, ) — ({221, (32, 1).

Then, ¢ agrees with o outside of z; = 2o = 0, and fixes the exceptional curve.

iii) Let Z = {P,...,P,} be the set of isolated fixed points of o, and
Z = {Ey, ..., E,} the set of corresponding exceptional curves on X . The open subsets
X\ Z and X \ Z are isomorphic, and ¢ and & agree under this identification. By
taking the respective quotients, we obtain that the open sets Y \ ¢7'(7(Z)) and
R\ 7(Z) are isomorphic. For any isolated fixed point P, we know that E? = —1
and it is fixed by 6. Then C; = 7(E;) is rational and its self intersection is
C? =C;-7.(E;) = E; - 7(C;) = 3E? = —3. By (REID, 2003, Example 3.1) the mini-
mal resolution of a singularity of type %(1, 1) is a rational curve with self-intersection

—3, 50 Y and R are isomorphic as claimed. O

Remark 3.3.8. For a K3 surface with a non-symplectic automorphism of higher
prime orders, Proposition 3.3.7 does not necessarily hold. For example, assume o is
a non-symplectic automorphism of order 5 and p an isolated fixed point with local
action given by (21, 22) + (C221, (329). Extending the action of ¢ to the blow-up of
p, we obtain (21, 29, t) — (321, (322, (2t). In this case, the exceptional divisor is not
fixed by . Consequently, & still has isolated fixed point and the quotient X /7 is

singular.

Proposition 3.3.9. Let m: X — P! be an elliptic fibration of type 2 on (X, o), and
assume o preserves the zero-section. Then, m induces an elliptic fibration 7p: R — P,

so R is a rational elliptic surface.

Demonstragio. By Proposition 3.3.7, m induces an elliptic fibration 7 on X. Let F
be the fiber class and ¥y the zero-section of #. Let 7: X — R be the quotient by
&, and denote D = 7(F) and C' = 7(%,). We claim that the pencil |D| induces an

elliptic fibration on R, and we can choose C' as the zero-section.

Since 7 is of type 2, every curve in the fixed locus of ¢ is a fiber component.
For all but finitely many choices of v; € P!, there are three distinct smooth fibers F,_,
FUQ and Fvs in an orbit of . Consequently, for a generic choice of D, in the pencil
|D|, the map 7 defines a cubic covering of D, by 3 disjoint smooth genus 1 curves.

By the Riemann-Hurwitz Theorem, D, must also be smooth of genus 1, and |D| a
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genus 1 pencil. Furthermore, D? = 7#,F - D, = F - 7(D,) = F- (F’vl + ZNWUQ + Fv3) =0,
so | D| induces an elliptic fibration 7z : R — P'. Since ¥ is preserved by &, we have

~ %

7(C) = %, and we can calculate the intersection product D - C' = 7,(F}) - C =

Fy -3 = 1. Thus, C is a section, and we conclude that T is an elliptic fibration

with C as the zero-section. O

Let R be the relatively minimal model of R with respect to the elliptic
fibration 7. There is a blow-down ng: R — R and R is endowed with a relatively

minimal elliptic fibration 7g: R — P! such that 75 = ng o 7g.

Proposition 3.3.10. Let mx: X — P! be an elliptic fibration of type 2 on (X, 0),
and assume o preserves zero-section. Then, there is a map Tpr: Pt — P! such that
w: X — P! is the base change of the rational elliptic surface mr: R — P! by 1p1,

and o is the induced automorphism.

Demonstracio. Let so: P! — X be the zero-section of m and SO(IP’l) = Y. Notice that
since Y is preserved by o, we can define an automorphism of P! as op1 = m o 0 0 5.
Since sy is a section, we have sg o W’EO = idy,, thus Jf;’,l = mo0%0s) = idp.
Furthermore, by the definition of fibrations of type 2, op1 acts nontrivially on P!, so

it has order 3. Let 7p1: P' — P! be the quotient map by op:.

Let U C P! be an open set such that Wél(’u) is a smooth fiber for every v € U.
Then, 71';%1<U ) is isomorphic to 75" (U), and the base change of 7z by 7p1 must be
birational to 75 : X — P!. After resolving singularities and contracting (—1)-curves
on the fibers, by the uniqueness of the relatively minimal model of elliptic surfaces,
we obtain the fibration 7x: X — P!. Furthermore, since the automorphism induced
by this base change agrees with o on the dense open set 75" (U), they must agree

everywhere. O]

Both Proposition 3.3.9 and 3.3.10 have the hypothesis that ¢ preserves the
zero-section. Indeed, the Galois morphism obtained by taking the base change of
a rational elliptic surface will always fix this class. In the following proposition we

show that this condition is necessary.

Proposition 3.3.11. Let m: X — P! be an elliptic fibration of type 2 in (X, o) such
that none of its sections is preserved by o. Then the induced map mg: R — P in

Proposition 3.5.9 is a fibration in genus 1 curves without section.

Demonstracio. Let @ be the induced elliptic fibration on X, F its fiber class and
il, ENQ, ZNg, an orbit of its sections by the action of &. Let 7: X — R be the quotient
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by &, and denote D = 7(F) and C' = 7(%,) = 7(X,) = 7(X3). We can calculate the
intersection D - C' = 7,(F) - C = F - 7(C) = F - (X1 4+ X3 + X3) = 3. Thus, C is a
3-section of mp: R — P O

Indeed, the conditions for Proposition 3.3.11 can happen. Let 7 is a fibration
of type 2 on (X, o) such that o preserves its zero-section and 7 has a 3-torsion section
P. Then the translation by P determines a symplectic automorphism o’: X — X.
Thus we can construct a non-symplectic automorphism ¢” = o o ¢’ such that none

of the sections of m are preserved by o”.

We can use Proposition 3.3.6 to prove the following.

Proposition 3.3.12. Let mx: X — P! be an elliptic fibration of type 2 on (X, 0),
and assume o preserves the zero-section. Then, o preserves two fibers FX and F;X,
and every other fiber is in an orbit quf, Fé, FX of o. Furthermore, up to permuting

FX and F{X we have the following.

i) FX is of type Iy or I* forn =0,3,6,9,12.
ii) Fy¥ is of type I3, 111* or I,, form =0,3,6,9,12,15,18.

iii) FX FX and FX have the same type, which can be 11,111, IV, IV* I" for

v

n=20,1orl, form=0,1,...,6.

iv) There are no fibers of type 11*, I* for n = 2,4,5,7,8,10,11,13 or I, for
n=7178,10,11,13,14,16,17,19.

Demonstragcio. By Proposition 3.3.10, 7 is the base change of a rational elliptic
surface mr: R — P! by a Galois covering 7p1: P — P! of degree 3 ramified over
a,b € PL. By Proposition 3.3.6, we know F, is of type IV or I* and F, is of type
11,111 or I,,. Since R is rational, we know by the Shioda—Tate formula (Corollary
1.1.18) that fibers of mg have at most 9 components, if F, is of type I,,, or I, we
know m <9 and n < 4.

Let FX, FYX be the fibers of 7w above F,, Fy respectively. Then, by (MIRANDA,
1989, Table VI.4.1), we know F.X is of type Iy or I* for n =0,3,6,9,12, and F}* is
of type I§,I11* or I, for m = 0,3,6,9,12,15,18. This proves (i) and (ii).

Let F, be a fiber of wg for u # a,b. Since u is not ramified by 7p1, there are
three distinct points vy, v, v3 € P! such that 7p1 (v;) = u, and Fv)f has the same type
as F,,. By (PERSSON, 1990), we know that any of the fiber types listed in (iii) are
possible for F,.
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It remains to prove that the types listed in (iv) are not possible for F,.
Firstly, notice that F, has at least 3 components, so by Shioda-Tate F, has at
most 7 components. Therefore, it remains to check for I; and I7. Since both have
7 components, we know F, is of type IV and Fj is irreducible. However, these
configurations are impossible (see (MIRANDA, 1990, Table 2.1, No. 22 and 27)). O

Corollary 3.3.13. Assume that o acts trivially on NS(X). Then, every fiber other

than FX and FZX is irreducible.

Demonstragio. Assume F-X is not irreducible, for v # a,b. Then, o takes the com-
ponents of FX to the components of another fiber. Since fiber components are

independent in NS(X), this constitutes a non-trivial action. 0

3.3.3 C(lassification by induced linear systems

Let X be a K3 surface with a non-symplectic involution ¢. In work by
Garbagnati and Salgado, the elliptic fibrations of X are directly related to linear
systems on the quotient X /¢, which is shown to be a rational elliptic surface with the
assumption that ¢ fixes curves of genus at most 1 (see (GARBAGNATI; SALGADO,
2019), (GARBAGNATT; SALGADO, 2020)). Our goal is to study the linear systems
induced by elliptic fibrations on the resolution R of the quotient X /o (see 3.3.7).
In order to do this, we work with the following assumption through the rest of this

section.

Assumption 3.3.14. Let X be a K3 surface and o € Aut(X) a non-symplectic
automorphism of order 3. We assume that X admits an elliptic fibration 7x: X — P!

of type 2 with respect to o such that o preserves the zero-section.

Let (X,0,mx) be a K3 surface with Assumption 3.3.14. Let 7 be an elliptic
fibration on X (possibly distinct from 7y). Then 7 induces a pencil of curves A on
R by pulling back | F| by nx, and then applying the pushforward by 7. The following
theorem describes the relation between the type of an elliptic fibrations in 3.2.10 and
which kind of pencil it induces on R (see Definitions 1.2.9 and 1.2.13)

Theorem 3.3.15. The induced pencil A is determined by the type of m.
i) 7 is of type 1 if and only if A is a conic bundle class of R.
it) 7 is of type 2 if and only if A is a splitting genus 1 pencil of R.

iti) 7 is of type 3 if and only if A is a non-complete linear system.
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The proof of this theorem is a direct adaptation of (GARBAGNATI; SAL-
GADO, 2019, Theorem 4.2), in which the automorphism ¢ is a non-symplectic
involution. The biggest change is the necessity of pulling back the linear system to

X before taking the quotient.

Demonstragio. Let [F] be the class of a fiber of the elliptic fibration induced in X
by 7 and F, the pullback of F,,.

Suppose that 7 is of type 1. Then the action of o on each F, lifts to an
action of & on F,. The pencil A is given by the system of curves {D,}vep1, where
D, = 7(F,) = F,/&. Since o has a finite number of isolated fixed points, for all but
finitely many v € P!, F, is smooth and D, = F,/o. Applying the Riemann-Hurwitz
Theorem to the quotient map F, — D,, we know that ¢g(D,) = 0 if and only if
the map ramifies in two distinct points with index 3, and ¢g(D,) = 1 if and only
if it is unramified. If we assume ¢g(D,) = 1, then ¢ acts as the translation of a
torsion point of F;, as an elliptic curve, fixing its period. Furthermore, since this is
true for all but finitely many v € P! and o acts as the identity on the base of 7,
then o must preserve the period of X. That is not possible due to the assumption
that o is non-symplectic, so g(D,) = 0. We can calculate the self intersection
as D> = D, - #(F,) = #*(D,) - F, = 3F, - F, = 0. By the adjunction formula,
D, - Kj = —2. We conclude that A = |D,| is a generalized conic bundle of R (with
respect to nr: R — R).

Suppose 7 is of type 2. By Proposition 3.3.9, we know that A consists of
the system of fibers {D,},cp1 in an elliptic fibration. Consequently, D? = 0 and
g(D,) =1, and by the adjunction formula, D, - K5 = 0. Therefore, A is a splitting

genus 1 pencil.

Suppose 7 is of type 3. Then o([F]) = [F'] and o ([F']) = [F"], for [F], [F"], [F"]
three distinct classes on NS(X), each respectively inducing distinct elliptic fibrations
m, ', 7. Pulling back these classes by 1x, we obtain [F], [F'], [F"] distinct classes in
NS(X ). Since they are supported on smooth curves of X, the intersection products
FF', FF" and F'F" are all greater than 0. Let FF' + FEF” + ['F" = m > 0, then
(F' + F' + F")? = 2m. Since F? = F'? = F? = (), the linear system |F + F' + F"|
is base point free. In particular, there is a smooth curve C'x of genus m + 1 whose
class is [F' + EF' + ). As a consequence, |Cx| = |F + F' + F"| is an m + 1
dimensional linear system with smooth general elements (see (SAINT-DONAT, 1974,
Proposition 2.6)). On the other hand, the family of curves F, + F’é + F’;’, given by
ny (77 (v) + 771 (v) + 7" (v)) for each v € P!, has dimension 1 and reducible
general element. Taking D, = 7(E,) = 7(F!) = #(£"), we conclude A = {D,},epr is
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a non-complete sub-linear system of |7(Cx)]. O

3.3.4 Equations for elliptic fibrations of type 1 and 2

Let (X, 0, mx) denote a K3 surface, a non symplectic automorphism of order
3 and an elliptic fibration of type 2 following Assumption 3.3.14. By Proposition
3.3.10, 7y is the base change of a rational elliptic fibration 7z: R — P! by a map
7p1: P — P! The fibration 7 is constructed as a resolution 7 of a rational map
@: P? ——» P! given by [z:y:2] — [F(z,y,2) : G(z,y,2)], and after a change of
coordinates, we can assume 7p1 is given by [s:t] — [s%:#3]. Thus, the generic fiber of

Ty can be written as

mx: Fl(z,y,2) + t°G(z,y,2) = 0.

Now, let 7: X — P! be an elliptic fibration distinct from 7y, and A the
induced linear system in R. Through the contractions Ng: R— Randn: R— P2 A
induces a pencil of curves I' in P2. In this section, we show how to use I" to deduce

an equation for the generic fiber of 7, when 7 is of type 1 or 2 in relation to o.

Let m: X — P! be an elliptic fibration of type 1 on (X, ). Then, A is a pencil

of rational curves in R.

Proposition 3.3.16. Let the restriction of g: R — P! to D, be given by the map

Then, we can write the generic fiber of m: X — P! as

T s?’xv = t?’yy.

Demonstracio. Let F, be a smooth fiber of 7 such that F, is isomorphic to F, =

nx'(F,). Notice that the following diagram commutes

D, «—— F,

I

P!« Pl

By the universal property of fiber products, there is a 1-1 map F,, — D, xp: P

Since F), is smooth, this must be an isomorphism. Then, we can write F;, in coordinates
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(P, [s : t]), where P is a point in D, and [s : ] on P! such that f,(P) = 7p:([s:t]), that
is, [2,(P):y,(P)] = [s:t3]. This gives rise to the proposed equation for the generic
fiber. O

Now, let 7: X — P! be an elliptic fibration of type 2 on (X, o) distinct from
mx. By Proposition 3.3.10, we know that 7 is the base change of a rational elliptic

surface by a cubic Galois covering 7p1 : P — PL.

Proposition 3.3.17. Let F,, F}, be the fibers above the ramification points of p1,
and Cq,, Cy the induced curves in I'. Then, we can write the generic fiber of m by the

following equation
71 Co(w,y, 2) + t3Cy(z,y,2) = 0.

Demonstragcio. By Theorem 3.3.15, we know that A is a genus 1 pencil inducing
an elliptic fibration #’: R — P!. Then, I' must be a pencil of genus 1 curves in
P? generated by C, and C,. For all but finitely many ¢ € P!, the fiber (7')7!(¢t)
is isomorphic to C,(z,y, z) + tCy(x,y, z) = 0. By a change of coordinates, we can
suppose that 7p1 is given by the map ¢ + t3. Thus, applying the base change by 7p1,

we obtain the wanted equation for the generic fiber of . O

Remark 3.3.18. In order to use this proposition, we need to know what are the
fibers of m: X — P! above the ramification locus of 7p1. We can deduce this from the
AD E-type of m. By Proposition 3.3.12; every reducible fiber which is the only one
of its Kodaira type must be ramified by the base change, otherwise it would have 3
copies. For instance, if the ADE-type of 7 is D7 @& E-, then the only reducible fibers
are of type I3 and /11*, and both need to be ramified by 7p:.

3.3.5 Conic bundles inducing elliptic fibrations

Let 7: R — P! be a relatively minimal rational elliptic surface and ¢: R — P!
a conic bundle. Assume X is a K3 surface obtained by taking the base change of
m: R — P! by a Galois cover 7p1: P! — P! of degree 2, and let ¢ be the induced
non-symplectic involution. Then, the conic bundle ¢ induces an elliptic fibration on
X of type 1 with respect to ¢ (see (GARBAGNATI; SALGADO, 2019, Theorem
5.3)).

In this section, we study the same phenomenon for base changes of degree
3. We work under the assumption that the base change of 7: R — P! by a Galois
cover 7p1: P! — P! produces a K3 surface X (that is, by Proposition 3.3.6 one of
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the ramified fibers is of type I or IV and the other is of type I,,, I or I11). This
induces a non-symplectic automorphism o of order 3 on X. By Theorem 3.3.15, we
know that every elliptic fibration mx: X — P! of type 1 on (X, o) comes from a conic
bundle on R. We ask the inverse question: when does a conic bundle ¢: X — P!

determine an elliptic fibration of type 1 on (X, 0)?

We can see that in general this does not happen. Indeed, let D, be a smooth
fiber of ¢ and let f,: D, — P! be the restriction of g to D,. Then, the fiber B,
of m, corresponding to D, is isomorphic to the fiber product of f,: D, — P! by
mp1: P! — P!, We can calculate the ramification of the map B, — D, in order
to find the genus g(B,). By Definition 1.2.9, we know that D, - F' = 2, where F
is the class of fibers of mr. Then, f, has degree 2, and ramifies at two distinct
points ¢, d € P'. Assume that a, b, ¢, d are all distinct. Then, there are distinct points
ay, as, by, by € D, such that f,(a;) = a, f,(b;) = b for i = 1,2. Furthermore, let ay, by
be points of P! such that 7p1(ag) = a and 7p1(by) = b. Then, ay, as, by, by, are the
ramification point of B, — D,, each having a single point in its pre-image, given by
(a1,ap), (az,ap), (b1, bo), (b2, by) respectively. Using the Riemann—Hurwitz Theorem,

we can calculate that g(D,) = 2.

Proposition 3.3.19. Let ¢: R — P! be a conic bundle in R, and let a,b be the
points in P! where p1: P — P! ramifies. Then, ¢ induces an elliptic fibration in
X if and only if the map f,: C, — P! given by the restriction of mr to the fiber

D, := p~Y(v) ramifies in either a or b for every v € PL.

Demonstrac¢io. Suppose f,: D, — P! ramifies in a for every v € P!, and assume that
the other ramification point is distinct from b. Then, the map D, xp P* =: B, — D,
ramifies in @', by, be, where f,(a’) = a and f,(b1) = f,(b2) = b. Applying the Riemann—
Hurwitz Theorem, we have g(B,) = 1. On the other hand, if ¢ induces an elliptic
fibration on X, then for all but finitely many v € P! it is true that g(B,) = 1, and
by the Riemann-Hurwitz Theorem the map B, — D, must ramify in 3 points. Let
Cy, d,, be the ramification points of f,. If ¢,, d, are distinct from a, b, then B, — D,
would ramify in 4 distinct points, and ¢(C!) = 2. Then we can assume without loss

of generality that ¢, = a for every v € P!. O

Example 3.3.20. Let m: R — P! be the rational elliptic surface induced by the pencil
of cubics A = sF +1G in P?, where F = y*2z —2® + x2° —42% and G = (z+ 2)(z — 2)=.
The pencil Ap = az — 2 describes the lines of P? through the point P = [0:1:0].
Since P is a base point of A, this induces a conic bundle ¢: R — P!. We want to

show that ¢ defines an elliptic fibration on the base change of X through the map
1 ([s:t]) = [s3:£3].
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Firstly, notice that 7p: ramifies in the point [0:1], [1:0]. For every v = [a:f] €

P!, the line ax = Bz in Ap is the image of the following map

po: P — P2

[ug:ug] — [Bug:ug:au,).

We can evaluate the map f,: C, — P! as the resolution of the composition of p,

with the cubic map [z:y:z] — [F(x,y, 2):G(x,y, z)], thus obtaining

fp: Pt — P!

[ug:ug) — [aui+(a?B—B%—4a)ui:(aB*—a®)ul).

Then, for each v = [a:f] the ramification points of f, are [1:0] and
[a?—33—4a:ab®—a®]. Since [1:0] is a ramification point of 71 and of f, for every

v € P!, ¢ induces an elliptic fibration on the base change X of R by 7p1.

34 A Jy-classification of K3 surfaces with non-symplectic

automorphisms of order 3

In this section, our goal is to provide a J,-classification to K3 surfaces X
with a non-symplectic automorphism o of order 3 acting nontrivially on NS(X). We
further assume that the Picard number of X is at least 12. Then, by Proposition 3.2.5,
the Kneser—Nishiyama method provides the full J,-classification (see Section 3.2.2).
By work of Artebani and Sarti, NS(X') must be equal to one of 10 possible lattices,
already assuming p(X) > 12 (see (ARTEBANI; SARTI, 2008, Proposition 3.2)).
For each possibility, Table 5 shows explicitly the Néron—Severi and transcendental
lattices, as well as the number n of isolated fixed points of o, the number m of
fixed curves of o, and ¢ the greatest genus amongst the fixed curves. Note that by
(ARTEBANI; SARTTI, 2008, Theorem 3.3), for each line in Table 5 there exists a K3
surface X with p(X) > 12, 0 € Aut(X) a non-symplectic automorphism of order 3,
and the corresponding lattices NS(X), T’x.

Remark 3.4.1. The classification in Table 5 is expanded to higher prime orders in
(ARTEBANTI; SARTT; TAKI, 2011, Tables 2-7). Let X be a K3 surface such that
p(X) > 12 and o € Aut(X) a non-symplectic automorphism of prime order p > 3
acting trivially on NS(X). There are exactly 4 possibilities for the lattices NS(X), T’x.
We do not apply the Kneser-Nishiyama method in these cases because there is no

suitable Ty of root type (see Theorem 3.2.8).
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No. NS(X) Tx nimig
1 U® A5° UaUB)DAY [5] 210
2 Ud Es® AS? UaUB)®FEs | 5|31
3 U® Ey® Ay U @ Eg 514 |2
4 UDEDAY |[UsoUB)@A[6]3]0
5 U Ey” UP?2 @ AS? 6|41
6 U E° o A, UaUB)dA, [7]4]0
7 U® Eg ® Fg U™ @ Ay 7151
8 |[UBE;DEsD A, UaU(3) 81510
9 U Ey”? U®2 8161
10| UDEFoA Ay(—1) 91610

Tabela 5 — Genera and lattices for each pair (n,m)

Theorem 3.4.2. Let X be a K3 surface with p(X) > 12 and o € Aut(X) a non-
symplectic automorphism acting trivially on NS(X). Then, Table 6 describes the

Jo-classification of elliptic fibrations of X. Fach fibration is given with its respective
ADE-type T, and Mordell-Weil group MW (7).

Demonstracao. The proof of this theorem consists of a direct application of the
Kneser—Nishiyama method (see (NISHIYAMA, 1996)). An overview of this method is
described in the end of Section 3.2.2, and the explicit computations for the required

cases are presented in Sections 3.4.1, 3.4.2 and 3.4.3. O
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3.4.1 Determining T

The first step of the Kneser—Nishiyama method consists of finding a lattice
Ty of root type such that rank(7y) = rank(7Tx) + 4, G, = Gr, and g, = qr,. Table
7 shows the choice explicitly for each Ty in Table 5.

No. TX GTX To
1 |UUQB)® AY® | (Z/37)° | Es @ A"
2 | UsUQB)®Es | (Z/32)% | E§° @ A,
3 U2 @ F 7./37 | Es® Es
4 |UaeUB)® AS? | (Z/32)" | Es @ AS?
5 U®2 g AS? (Z]37)* | Bs @ AY*?
6 | UsUB)® Ay | (Z/3Z2)° | B¢ AS?
7 U2 A, 737 | Es® A,
8 UaU(3) (Z/3Z)? | Es® A,
9 U®? {e} Fg

10 Ay(—1) 7./37. Es

Tabela 7 — Tj for each surface X

Proposition 3.4.3. For every Tx, Ty in Table 7, G, = G, and qr, = qry -

Demonstragdo. Firstly, observe that for any L, Le, we have G o1, = G, X Gy,
and qr,¢r, = qr, + qr,. This reduces the required calculations to the cases Tx =
Ay(—1),U%%, U & U(3) and Ty = Es, Es, Eg @ As, respectively. The lattices Gr, are
given in (ARTEBANI; SARTI, 2008, Lemma 1.3, Table 1), and both G, and gz,
can be calculated using (NISHIYAMA, 1996, Lemma 1.2).

Firstly, let Ty = U®2. Since Tx is unimodular, its discriminant group Gr, is
trivial, and consequently g7, = 0.

Let Ty = As(—1), and write its generators as ay,as, with a} = a2 = 2,

ay - a; = —1. Then the discriminant group G, is generated by

w = -ay + 5as.
373

Furthermore, we calculate its discriminant lattice

2 4
qry (W) = 3="3 mod 27Z.

Finally, let Tx = U @ U(3), and write its generators as uy, ug, u}, uy, with

up = (uj)® = w; - uy =0, uy -up = 1, and u} - uy = 3. Then G is generated by
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L, 1,
wy = gul + qu
2 !/ 1 /
Wo = §U1 + gug.
Then, we calculate
4
qry (W) = ~3 mod 27
2
qry (we) = ~3 mod 27Z.

Using (NISHIYAMA, 1996, Lemma 1.2), we can check that the values of Gy,

and gp, agree with the ones calculated above. O

3.4.2 Embeddings into Niemeier Lattices

In this section, we show how to calculate the primitive embeddings of each
Ty in Table 7 into a Niemeier lattices L. Firstly, we notice that since every T has
a sublattice of type Eg or FEg, every Niemeier lattice L which allows an embedding
p: Ty — L must also have a sublattice of type E,. These lattices are shown in Table
8.

Lroot L/Lroot
EF? 0
Es ® Dyg 727
E*@® Dy | (Z)27)?
E;: ® Ar 7/67Z
E* (2./37)?
Es®D;® Ay | Z/12Z

Tabela 8 — Niemeier lattices containing an £, sublattice

For any lattice L in Table 8, we can calculate the primitive embeddings of
A?e , Fg and Ejg into the components of L. We obtain an embedding ¢: Ty — Lioot
by composing these embeddings together. Similarly, we calculate the orthogonal

@(Ty) et by composing the orthogonal lattices for each component of L.

The primitive embeddings of Ay, Fg and FEg into another root lattice are
shown in (NISHIYAMA, 1996, Lemmas 4.1, 4.2 and 4.3), and their corresponding
orthogonal lattices in (NISHIYAMA, 1996, Corollary 4.4). Furthermore, every possible
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embedding of a root lattice into a lattice of type E, is shown in (NISHIYAMA, 1996,
Table 5.1).

We move to the calculation of primitive embeddings of AS* into A, or D,,,

for ¢ > 2, and their orthogonal complements. Firstly, we prove the following lemma.

Lemma 3.4.4. If Ny, Ny are sublattices of a lattice L, Ny is of root type and
I 1L L(NTE)root
N2 C Nl ’ then ((Nl @ NZ) )root = (N2 )root-

Demonstragio. Since Nj is of root type, Ny C (NiL)po0r € Ni-L. Then,

(Ni-F)

N;—(N%L)root g N;_ — (Nl @ NQ)J_L.

Taking the root type of both sides, we get (N;(N%L)r"“)mot C (N1 @® No)* ) oot Now
suppose & € ((N1 @ No) L) io0r. Then, z is generated by roots and (z,n;) = 0 for all
ny € Ny, so by definition 2 € (N{-F),00t. Since (x,m9) = 0 for all ny € Ny, it is true
that x € (N;(N%L)rm)mot. This gets us to the result. O

Proposition 3.4.5. The primitive embeddings of AS* in A, or D, up to an action

of their Weyl group, are as follows.

i) There is a unique embedding given by A?£:®Z€;é<a3i+1,a3i+2> C A, for

n > 30 — 1. Furthermore, the orthogonal of this embedding is
0 it3—1<n< 3¢,
Ap 3 ifn>30+1.

(A5 =

root

ii) There is a unique embedding given by AS* = @D (ds_1,dse) C D,, for n > 3¢.

Furthermore, the orthogonal of this embedding is

0 if30<n<3041,
AP? ifn=30+2,
As if n =30+ 3,
D, _3 ifn>30+4.

(A58 =

root

Demonstragio. We prove this by induction. When ¢ = 1, the primitive embeddings of
Ay into A,, and D,, are proved in (NISHIYAMA, 1996, Lemma 4.1, Lemma 4.2), and
their respective orthogonal lattices are calculated in (NISHIYAMA, 1996, Corollary
4.4). Suppose this is true for £. Then, for n > 3¢ + 2, there is a unique primitive
embedding of A$Y in A,, and the orthogonal lattice is A,_3; = (asei1, ..., a,). We

know that Ay = (asei1, ager2) is the unique primitive embedding of Ay in A,_3,, up
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to an action of W (A, _3) C W(A,). Gluing together both embeddings, we obtain a

unique primitive embedding of A3

in A,, up to an action of W(A4,,). By Lemma
3.4.4, (AP = (A3""),00.. This is equal to 0 if n = 3¢ + 2 or 3¢ + 3, and to

Anfggfg if n 2 3/ + 4.

For n > 3¢ + 3, we know that there is a unique primitive embedding of AJ*
in D,,, and the orthogonal is equal to A if n =3¢+ 3, and to D,,_3,if n > 3¢+ 4. In
either case, there is a unique primitive embedding of A5 up to an action of the Weyl
group, thus obtaining an embedding of AJ**

obtain the result. OJ

in D,,. We can apply Lemma 3.4.4 to

Using this result, we are able to explicitly show the generators of orthogonal
complements of primitive embeddings of a lattice NV into a Niemeier lattice L, as

well as their root types, when N is a sum of Ay, Fg and FEg.

Firstly, we establish some notation. Let a;,d; and e; denote the canonical
generators of the A,,, D,, and E,, lattices, respectively. For ease of notation, we define

elements «; in lattices of type A,, as follows.

= agj—2 + 2a3;—1 + 3as; + 2a3;41 + azit2,

/
o = agi—2 + 2as;—1 + 3as;.

Then, letting g = d;, we define the following elements of D,, recursively.

51’ = (51-71 + dg,;,l + 2d3¢ + 2d3i+1 + d3i+27
5; = 2(51'_1 —+ d32‘_1 + d3i + d3i+17
8] = 8i_1 + dzi—1 + 2d3; + 2d3i41.

Finally, we denote a general element of F, as follows.
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>\2>\3/\4)\5)\6 Z Ai€i,
)\2>\3>\4)\5)\6)\7 Z Ai€i,
,\2,\3,\4,\5,\6,\7,\8 Z Ai€i-
In Table 9, for pairs of lattices N, L, we explicitly present the unique primitive

embedding ¢: N — L (up to an action of the Weyl group of L), the orthogonal
complement ¢(N)** and its root type (¢(N)E) o0t-

Tabela 9 — Primitive embeddings and orthogonal complements

L[N p: N—= L p(N) ((N) ") root
-12{3 0 --- 0
A | A (a1, az) 0 Ag = (), aq, ..., an) Ag
S O R . ol )
-6 3 |0 0 0
3 —-12|3 0 0
o2 0 3
A, (a1, az)®({as, as) 0 0 = (a1, a3, ar, ..., ann) As
. As
S T D A o o )
-6 3 0 |0 0
3 -6 3 |00
AT | (a1, as)®{aq, as)B{az, as) 0 3 =123 0 | = (o, b, a19,011) Ay
0 0 3 A
N e o ) ]
-6 3 0
A?“ @?:0<G/Si+1>a3i+2> As(?)) = 3 -6 3 = <0/1 (€5} Oé;> 0
0 3 -6
-1213 0 --- 0
A | Ay (a1, ag) 0 A14 = (a}, a4, ..., a17) Ay
0




102

Capitulo 3. FElliptic fibrations on K3 surfaces

L N p: N— L QO(N)LL (e(N) ") oot
-6 3 |00 --- 0
3 —-1213 0 0
@2 0 3 ,
Air | A3 (a1, a2)®{ay, as) 0 0 A = (a1, ah, ar, ..., a17) An
. . 11
S U N W L U I
—6 3 0 [0 0 0
3 -6 3 |00 0
0 3 -12(3 0 0
AFP | (a1, a2)®{as, as)B{ar, as) 8 8 g = (a1, g, 0%, ayg, .., G17) Ag
: N . Ag
I O P AN oo o )
-6 3 0 0 |00 0
3 —6 3 0 |00 0
0 3 -6 3 |00 0
0 0 3 —12/3 0 0 (on, a3, a5, .
e 8 lasien, az _ lag, 03,04, A
2 @7,70((1(5,4»1 a(s,+2> 8 8 8 g a13~,~~~~a17> 5
N N N . A5
R R o 0 0o o )
-6 3 0 0 0 |00
3 -6 3 0 0 |00
0o 3 -6 3 0 |00 (a1, a9,
A5 D (asit1, asito) 0 0 3 —6 3 |00 |= L2 A,
’ 0 0 0 3 —12]3 0 a5, 16, 017)
0o 0 0 O 3
S T Y U T T T R T s A IR
-6 3 0 0 O
3 -6 3 0 0 (o, an,
A3° Do (asit1, asita) As(3)=]0 3 -6 3 0 |= "TH0Y 0
0 0 3 -6 3 @ 0)
0

77777777 -4 -1fo oo0o0y |
-1 —-4|-1 1 0 0
0 -1 (84,05, 09,
0 1 ~ ds,dy, dyo)
0 0 Dy
,,,,,,,, oot /]
-4 -1 0 0
-1 -4 -1 0
0 0 -2 —4
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ymp 14
L N p:N—= L p(N)*F (P(N) ) root
“A[-1 10 -0
-1
1 U
Dy | Ay (d2, d3) 0 D13 = (01,61,ds, ..., dis) Dy
S O N
-4 -1 0 00 0
-1 —-4|1-1 10 0
- 5, 84,6
Ag? (da, d3) © (d5, ds) 0 1 = O%0 Dy
0 0 DlO dg, ..., dig)
S U I Y R Y AU R
-4 -1 0|0 0O 0
-1 -4 -1 0 00 0
0 -1 —4/-1 10 0
: 0 0 -1 5. 5,.5. 6.
AP | (d2ds) © {dsy ds) © (o) | | o o 1 = fifl, ) b
0 0 0 Dy
S IR N O R U
-4 -1 0 0|0 O0O0O
-1 -4 -1 0|0 00O
0 -1 -4 -1, 0 00O
0 0 -1 —4|-1100 (51,8, 8,6
@4 1 o _ 1,02, 03, 04
Az Bt i, ) 0 0 0 -1 04, d1a, dis, dig) D
0o 0 O 1
0 0 0 0 Dy
S R I N W 0.0 0 O
-4 -1 0 0 0 0
-1 -4 -1 0 0 O
0 -1 -4 -1 0 0 (8,6, %,
@5 5 - - _ 1> %25 Y3
A2 B dsi-1, dsi) 0 0 -1 —4 -1 0 8,00, 87 0
0o 0o 0 -1 —4 -2
o o o0 0 -2 —4
Es | As (ea; e3) AF? = (5, €6) @ (en, 1o5a1) AF?
A? (ea, €3) @ (es, e6) Az = (e1, 1g2y) Ay
B (1, emesy | o 1 0
E7 | Ay (ea, €3) As = (€5, €6, €75 1929100 €1) As
A5? (2, €3) ® (€5, €) (=6)® Az = <24()545> @ (e, 12:;21o> As
Eg <€17 66) (76) = <24g543> 0
Es | A, (e2,€3) Eg = (es, €5, €6, €7, 15291000 €1) Es
A§2 (ea, €3) D (es, €6) Azez = {e1, 1232100> @ (es, 2425432> A?Z
Es (€15, €6) Az = (€81 548503) Az
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3.4.3 Calculation of the torsion subgroups

In this section, we calculate the torsion subgroup of the Mordell-Weil group
of each fibration in Table 6. In (SHIMADA, 2000, Table 1), the possible torsion
subgroups are presented for each AD E-type. For most of the fibrations in Table 6,
there is only one admissible torsion subgroup, and thus there is no need to calculate
Wioot/Whoot explicitly. The fibrations with multiple admissible torsion subgroups
are 4.8, 6.9, 8.3, 8.6, 8.7, 9.2, 10.3 and 10.4. When rank MW (7) = 0, the torsion
subgroup is isomorphic to W/M (see (NISHIYAMA, 1996, Lemma 6.6)), and the
torsion can be determined by calculating det T, = det W and det M. This allows
us to determine the torsion for fibrations 4.8, 6.9, 8.6 and 9.2. For 10.3 and 10.4,
the torsion subgroups were already calculated in (NISHIYAMA, 1996, Theorem 3.1,
Table 1.1).

Proposition 3.4.6. The torsion subgroups of fibrations 8.3 and 8.7 in Table 6 are
Z)27 and 0, respectively.

Demonstra¢io. We start with fibration 8.3. By ((SHIMADA, 2000, Table 1)), the
torsion subgroup is either Z/27Z or 0. We determine that the subgroup must be Z/27Z
by explicitly showing an order 2 element in W0t/ Wioot- The lattice Ty is embedded
in the Niemeier lattice Lyoor = E52 @ Dyg. Let egl), e ,egl), 652), cee eg), dy, ..., d
be generators for L,,o;. Then, Ty is embedded isomorphically onto the sublattice
<e§1), - eél)) e3) (eg), 6;(;,2)> C Lyoot- We calculate Wi by taking the root type of the

orthogonal complement of ¢(7}), obtaining

Wioot = <eé2), eg), 6(72), (26&2)—#6&2)—{—26&2)+3€i2)—|—26é2)—|—6é2)), 652)> ® (dy, ..., d1)-

Then, we can find an element n € L\ L,y such that 2n € W,et. Therefore,
n lies in the primitive closure Wi,ot, and the torsion subgroup is Z/27Z. Explicitly,

e e 4 e 4 d +dy + do + ds + dug

77: 2

Now consider fibration 8.7. By ((SHIMADA, 2000, Table 1)), the torsion
subgroup is also given by either Z/27Z or 0. We determine that the subgroup
must be trivial by showing that no element of order 2 in L/L,o is in Wieet. Let
Lyioot = Fg ® D7y ® Ay and ey, ... 66, dy,...,d7, ay,...,a1; be its generators. Then
Ty is embedded isomorphically into the sublattice (eq, ..., es) ® (da,d3) C Lyoot. We
calculate

Wroot = <(d1+d2+2d3+d4), d5, dﬁ, d7> @D <CL1, cany CL11>.
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By (NIEMEIER, 1973), L/Lyoot = Z/127Z, so there is a single element of order 2
modulo Lo We can find g in this class such that 2u € Wi, Explicitly,

N_dl—l—dg—l—a1+a3+a5+a7+a9—|—a11
- 5 ‘

Consequently, the torsion subgroup is trivial. O

3.4.4 C(lassification with respect to automorphisms

In this section, we apply the results in Section 3.6 to the fibrations in Table 6.

Proposition 3.4.7. The fibrations 1.1, 1.6, 1.7, 2.1, 2.3, 3.1, 4.1, 4.7, 4.8, 5.1, 5.2,
6.1, 6.2, 6.8, 6.9, 7.1, 8.1, 8.6, 9.1, 10.1, 10.5 in Table 6 are of type 1 with respect

to 0.

Demonstracio. On all fibrations listed apart from 1.1, 1.7 and 4.8, the ADE-type
T has a component of type Eg or Eg. Thus, by Table 1, they have a fiber of type
IV* or IT*. The three remaining fibration have ADE-type T = AY* for £ > 2, so
in particular they have more than 2 reducible fibers. By Proposition 3.3.12 and
Corollary 3.3.13, all fibration listed cannot be of type 2. Since by assumption o acts
trivially on NS(X), the fibrations must be of type 1. O

Proposition 3.4.8. The fibrations 1.2-1.5, 1.8-1.10, 2.2, 4.2-4.6, 4.9—4.11, 5.5,
6.3-6.7, 6.10-6.12, 7.2, 8.2-8.5, 8.7, 8.8, 9.2, 10.2, 10.3, 10.4, 10.6 in Table 6 are
of type 2 with respect to o.

Demonstragdo. All listed fibrations apart from 9.2, 10.2 and 10.6 have positive rank,
so by Proposition 3.2.12 they cannot be of type 1. The ADFE-types T of the three
remaining fibrations all have a component D,, for n > 4, so by Table 1 they have
fibers of type I_,. Therefore, by Proposition 3.3.1, these fibrations are also not of
type 1. ]

Since we are able to determine the types of every fibration with respect to
the automorphism o, we can use our results on the reducible fibers on fibrations of

type 1 and 2 to determine the following.

Corollary 3.4.9. On all fibration on Table 6, the ADE-type T determines the
Kodaira types of all reducible fibers.

Demonstracao. By Table 1, the type T, of a reducible fiber F, corresponds uniquely
to the Kodaira-type of F,, with the exception of A; and A,. If T, = A;, then the
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fiber F, can be of type Iy or I11; similarly if T,, = A, then F, is of type I3 or IV.
By Propositions 3.3.1 and 3.3.12 and Corollary 3.3.13, the fibrations on Table 6 do
not admit fibers of type Iy or I11. Furthermore, if T" has a component of type As,
then it corresponds to a fiber of Kodaira type IV if 7 is of type 1 and I, if 7 is of
type 2 with respect to o. O

3.5 Elliptic fibrations on X3

The X3 surface is the minimal resolution of (E¢, x E,)/p, where (3 is a
primitive cube root of unity, E¢, the elliptic curve with torus C/(Z + (3Z) and p
the automorphism given by p(z1, 25) = (Cs321, G '22). It was first studied by Shioda
and Inose in (INOSE; SHIODA, 1977), and subsequently by Vinberg in (VINBERG,
1983), where it was first denoted by X3 and described as one of the most algebraic
K3 surfaces. The X3 surface was also studied in (GEEMEN; TOP, 2006), where it
was seen as a special fiber in a larger family of K3 surfaces. In particular, we know
that p(X3) = 20 and X3 admits a non-symplectic automorphism o of order 3 which
acts trivially on NS(X3). Therefore, by the classification in Table 5, we know that
NS(X3) = U @ E$? @ Ay and the fixed locus of o consists of 9 isolated points and 6
rational curves. Furthermore, by (ARTEBANTI; SARTTI, 2008, Proposition 5.1), the
moduli space of K3 surfaces with these properties is irreducible. In particular, since
p(X3) = 20, any K3 surface X with p(X) = 20 and a non-symplectic automorphism
of order 3 acting trivially on NS(X) is isomorphic to Xj.

The J>-classification of elliptic fibrations on X3 appears on Table 6, but it was
first presented as an application of the Kneser—Nishiyama method in (NISHIYAMA,
1996). Furthermore, (BRAUN; KIMURA; WATARI, 2013, Corollary D) shows that
J1(X3) = Jo(X3), that is, there is exactly one elliptic fibration on X3 in each Jp-class
modulo Aut(X3).

In this section, we use the X3 surface in order to show the relation between
the elliptic fibrations on a K3 surface and the linear systems on the resolution of its
quotient by a non-symplectic automorphism of prime order. This method also allows
us to find explicit Weierstrass equations for an elliptic fibration in each class. We
start in Section 3.5.1 by constructing X3 as a base change of a rational elliptic surface
R by a cubic Galois cover, which endows the K3 surface with a non-symplectic
automorphism o of order 3. In Section 3.5.2, we provide an elliptic fibration in each
class of J1(X) by describing the fiber class and a section, and apply Theorem 3.3.15
to classify each in relation to o. In Section 3.5.3, we apply Propositions 3.3.17 and

3.3.16 to provide Weierstrass equation for each fibration.
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3.5.1 Construction of X3

In this section, we construct X3 as the base change of a specific rational
elliptic surface. Let R be constructed by the pencil of cubics A = sF + tG in P?,
where F is given by zyz = 0 and G by (x — y)(y — 2)(z — x) = 0 (see Proposition
1.2.2).

Py

ly x=0 P, =[1:0:0]
ro rs ly:  y=0 Py =]0:1:0]
Os 003 2% z2=0 P; =10:0:1]
r: o y—z=0]Q;=]0:1:1]
P, P, ro: z—x =01 Q= [1:0:1]
7 Q w El rs .Z'—y:() Q'g,: [110]
' O =[1:1:1]

62 ™ 63

Figura 3 — Cubics generating A

The base points of A lie on the scheme theoretic intersection F N G, and
consist of P, Py, P3, @1, ..., Qg. The points Q4, Q5, Qs are infinitely near to Py, P, P,
respectively, and correspond to the tangent directions of 71,79, 3. Blowing up the
base points, we obtain the rational elliptic surface R, whose only reducible fibers are
F, := 7' ([0:1]) of type IV and F, := 7" ([1:0]) of type I, i.e. the strict transforms
of F and G. The exceptional divisors Hy, ..., Hg above (1, ..., (s determine sections

of mp.

The curves in Figure 4 have self-intersections ¢ = E? = r? = —2, and
H? = —1. By (OGUISO; SHIODA, 1991, Main Theorem), the Mordell-Weil group
Ofﬂ'R is MW(TFR) :Z@Z/SZ

We apply the base change by the cubic Galois cover 7pi: P! — P! to-
tally ramified at [0:1] and [1:0], obtaining a K3 surface with an elliptic fibration
mx: X — P! (see Proposition 3.6.5). The fibers above the ramification points of 7p1
are FX := 71 ([0:1]) of type Iy, and F;* := 7 ([1:0]) of type I;s, and every other
fiber is irreducible (see (MIRANDA, 1989, Table VI1.4.1)).

Proposition 3.5.1. Let o be the automorphism of X induced by the base change.
Then, o acts trivially on NS(X).
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Figura 4 — Reducible fibers of 7y

Demonstragdo. By Proposition 3.6.12, we know that the generic fiber of 7wy is given
by F + t3G. Furthermore, o acts as t + (3t. Thus, o preserves every section and
permutes the fibers of 7x, except for F-X and F;X. Since every other fiber in irreducible
and o fixes the fiber class, all that remains is describing the action of o over F;X and
F{¥. We start by looking at the corresponding fibers in R xp1 P!, which we denote
by E, and F}, respectively. These fibers are isomorphic to the corresponding fibers
in mg, and all their components are fixed by the induced automorphism. However,
their singular points are also singularities of R xp1 PL. In order to arrive at X and o,
we need to blow-up these singularities and lift the automorphism to the exceptional

divisor.

Let p be a singular point of F,. Then, R xpi P! is given locally by t = xy,
with (0,0,0) corresponding to p and (x,y,t) — (z,y, (3t) the Galois automorphism

x
t
and Y} = ¥. The exceptional divisor at ¢ = 0 consists of 2 rational curves given by

obtained by the base change. Blowing-up the origin, we have t = x;y;, where x; =

z1 =0 and y; = 0. We can extend the automorphism as (x1,y1,t) — (GGer, Gy, Gat).
Thus, this automorphism acts on each component of the exceptional divisor with

order 3, and their intersection at x; = y; = 0 is an isolated fixed point.

Now, let p be the singular point of E,. In this case, the surface R xp1 P! is

given locally by t = zy(z + y). Blowing up the origin we have t3 = x3 + x5, with

o = £ and t, = L. The exceptional divisor at y = 0 is an elliptic curve, and the
Yy Yy

action can be extended as (x2,y,t2) — (22,y, (3t2). Thus, o acts with order 3 on the
exceptional divisor, and fixes 3 points given by (0,0,0), (1,0,0) and the point at

infinity of the elliptic curve. These fixed points lie on the intersection with the strict
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transforms of the components F,. These components are (—1)-curves, and after their
contraction we obtain X. With this, we are able to describe the action of o on X,

and see that o acts trivially on NS(X). O

The description of the action of o over FX and F;X shows that the fixed locus
of o contains 6 rational curves, corresponding to the components of F;X coming from
the I fiber F, and 9 isolated fixed points, corresponding to the 3 fixed points on FX
and the 6 points on the intersection of the curves of ;X which are not on the fixed
locus. Notice that this agrees with the description of the fixed locus on (ARTEBANT,
SARTTI, 2008, Proposition 3.2). Furthermore, we have the following corollary.

Corollary 3.5.2. The surface X is isomorphic to Xs.

Demonstragio. By the Shioda—Tate formula, p(X) = 20, and by Proposition 3.5.1,
o is a non-symplectic automorphism of order 3 acting trivially on NS(X'). Therefore,
by (ARTEBANI; SARTI, 2008, Proposition 5.1), X is isomorphic to Xj. ]

O10

CH Os
Figura 5 — Ramified fibers of mx

Figure 5 describes the fibers FiX and Fj* of my. The curves ©; are the com-
ponents of ;X and ¥; are the sections inherited from H; in R. The self-intersections
of the portrayed curves are © = X2 = —2, (F:*)? = 0. The curves in the fixed locus

of o are highlighted as bold, and the isolated fixed points are marked by black dots.
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3.5.2 Elliptic fibrations on X3

By Proposition 1.3.13, elliptic fibrations on X are equivalent to embeddings
U < NS(X). Then, for classes L, M € NS(X) such that L?> = 0, M? = —2 and
L - M =1, there is a fibration 7y ps: X — P! such that L is the fiber class, and M
the class of the zero-section. Our goal is to create divisors L; and M; which induce
an elliptic fibrations m;: X — P! for each fibration 10.i in Table 6. We can create

L;, M; using only ©,’s and X;’s as components.

Proposition 3.5.3. Fori=1,...,6, each pair L;, M; in Table 10 induces an elliptic
fibration 7;: X — P! in the same Ji-class as fibration 10.i in Table 6.

No. L; M;
1 |20+ 4017 +60¢ + 39 + 501 + 405 + 303 + 20, + O5 | O
2 O+ X0 +23.200; + 54+ O3 O16
3 O15 + 2016 + 3017 + 40y + 2% + 301 + 20, + O3 Oy
4 Z;io O; Yo
5 300+ 201 + 2017 + 230+ Oy + O + X3 O3
6 @17+20+2@0+2@1+2@2+2@3+21+@4 @5

Tabela 10 — Divisors inducing elliptic fibrations on X3

Demonstragdo. For each i, the divisor L; lies in the fiber class of m;. By construction,
this divisor represents a reducible fiber of 7;, and its root type as a lattice must
appear in the ADFE-type of the fibration. For example, L, is a fiber of type IT*,
which induces an Eg in the AD E-type of 7;. The only fibration with this AD E-type
possible in X by Table 6 is 10.1. Equivalently, Lo induces a Dq¢, L3 an E7, Ly an
A7, Ly an Fg and Lg a D7. These root lattices are all unique to the AD E-types of

their respective fibrations. O

In order to apply Theorem 3.3.15, we need to describe X, given by the blow-up
of the isolated fixed points of o, and R, the quotient of X by the lifting & of ¢. The
surface X has 9 new components given by the exceptional curves of the blow-up
n: X — X. We denote the 6 curves above the intersection points of O3, and Oz,
by Osi413i12 (for i =0, ...,5), and the 3 curves above the intersection of 3; and 3,3
by ¥;+3 (for i = 0,1,2). For each curve C' in X, C denotes the strict transform
of C' by 1. The self intersections of each component are given by ©2 = —2if i = 0
mod 3, ©? = —3if i 0 mod 3, ¥? = -3, ©7,,, =¥2, , = —1 and F? = —2. The
automorphism & of X maintains the action of o on each strict transform and fixes

the exceptional curves.
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O16,17

O17

O10,11

O7s

10 O Os
Figura 6 — Components of X

Let R =X /&, and T: X — R the quotient map. For each component above,

we calculate the pushforward by 7 given as follows.

7600 =FE 7.0y =10 750 =3H, 7.0,,=R,
70, =35 7.0,0=359 7Y =3H; 7.0,5= Ry
7,0y =3S, 7,01, =35 7Y, =3H; 7.075=Rs
703=0; FOp=E £X;3=30 #Opu=1"R
7.0, =35, 70O1;3=3S 7Y, =3Hs 70131 =R;
7,05 =35, 7,01, =35 ©3X5;=3H, 701617 = R
705 =Ey 7.615=10, 7Y =r fl,=3Eo
707 =35 7015 =235 T.514="7;

705 =35 7017 =35 T.Xa5 =1

The intersection pattern between distinct components is maintained, but the

self-intersections are changed. The pushforwards of curves fixed by ¢ have the self-

intersection multiplied by 3. On the other hand, the pushforward of curves preserved

by & (i.e., & acts on the curve with order 3) have the self intersection divided by
3. We obtain E? = (2 = —6, R? = #? = —3, and S? = H? = E% = —1. Notice that

even though g(ﬁa) = 1, since & fixes 3 distinct points in F,, by Riemann-Hurwitz

we have g(Ep) = 0.
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If we contract the (—1)-curves Sy, ..., S12 and Ep, and subsequently contract
the curves Ry, ..., Rg, we obtain a birational morphism ¢: R — R, with ¢,E; =
E;, a*gz- =, e H; = H; and ,7; = r;. Since the canonical divisor of R is equal to

—F in NS(R), we can use ¢ to calculate the canonical divisor of R

Kp=Y% R +2Y12 8 -3 7 —2Eo.

Theorem 3.5.4. Let my,...,mg be the elliptic fibrations on (X, o) presented in
Proposition 3.5.3. Then, m and 75 are of type 1 and o, w3, 7y, T are of type 2, with

respect to o.

Demonstragio. For every L; in Table 10, we first apply the pullback by 7, then
the pushforward by 7. The divisor 7.(n*L;) induces a linear system in R, which by
Theorem 3.3.15 can be used to classify m; with respect to the action of o. If 7; is of
type 1, then 7.(n*L;) = 3L;, where L, is a generalized conic bundle class in R, so
Fo(n* L) - K =3L;- K =3-(=2) = —6. If 7; is of type 2, then 7,(n*L;) = L; is a
splitting genus 1 pencil, and L; - Kz = 0. Since o acts trivially on NS(X), there are

no fibrations of type 3. The explicit calculations of 7.(n*L;) and its intersection with

K are presented in Table 11. O
No. To(*L;) T.(n*L;) - Kp
1 | 3L1 = 3(2S11 + 2R +4S12 + 2F +3Hy + 7 —6

4581 4 3Ry + 4S5 + f3 + 2S5 + Ry + Sy)

2 | Ly= Rg+3Si1a+7 +3Hs+2E, +6S1 + 4R,

4685 + 205 + 653 + 4Ry + 654 + 25 0

+6S5 + 4R5 + 656 + 201 + 657 + 4Ry
+6Ss + 2E3 + 3Hg + 73 + 359 + Rs

3 Zz3 = 572 + 6511 + 5Rg + 9512 + 4E1 + 6[:[4 0
4271 + 951 + 5Ry + 652 + {3

4 | Li= YL B+ 643128 +25 0 Ry 0

5 3f15 = 3(E1 + 251 + R~1 + Sy + 2:5'12 —6
+Rg + S11+2Hy + 7 + Hl)

6 | Lo= Rs+3Si2+71+3Hs+2E1 +65 +4R
+6S9 + 203 + 3H3 + 73 + 353 + Ro

Tabela 11 — Divisors induced in R
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3.5.3 Weierstrass Equations of the elliptic fibrations

In this section, we apply the method described in Section 3.3.4 to find
Weierstrass equations for each 7; in Table 10. Let I'; be the pencils of curves in
P? induced by each m;. We describe the geometry of I'; by applying the following
substitutions for each L; in Table 11, where % is the pullback of the line class

h € Pic(P?) to Pic(R).

ly=h—FEy—Es—H, — Hs — Hy — Ry — 2R3 — 2Ry — R

— S5 — 28, — 355 — 356 — 357 — 355 — 259 — Sho,
lo=h—F,—E3—Hy,— Hy — Hy — Ry — Ry — 2R5 — 2Ry

— 28] — S5 — S7 — 285 — 389 — 3519 — 3511 — 3512,
Is=h—FE,—Ey— Hs — Hy — Hs — 2R, — 2Ry — R3 — Ry

—38) — 38, — 383 — 35, — 285 — S5 — S11 — 2510,
—Eo—E, —H, —2H, — R; — Rg — 25, — S5 — S11 — 2512,
h—Eo —Ey — Hy — 2H5 — Ry — R3 — Sg — 254 — 255 — S,
h— Eo — Es — H3 —2Hg — Ry — Rs — S7 — 255 — 259 — Sig.

S
I
>

]

2

r3

As an example, applying these substitutions to L; we obtain L; = oh — Eo — By —
H,— H3;— Hs — Ry — Ry — S5 — 25, — 2S5 — Sg. The component 2/ indicates that the
linear system I'y in P? is composed of conics. The negative components Eo, s, H;
and H; indicate that the conics in I'; pass through the points O, P, Q1 and Q3 in P2,
and the remaining components come from the pullback of the former. Consequently,
I'; is the pencil of conics through O, P, )1, Q3. We can do the same for the rest of
the divisors L; (see Table 12).

The description of these systems allows us to use Propositions 3.3.17 and

3.3.16 and find Weierstrass equations for each fibration in Proposition 10.

Proposition 3.5.5. The elliptic fibrations m and 75 are given by the following

equations in Weierstrass form:

20t —403
a(v)

L2 v2—2u41,, .3
TS5 Y — Yy Y=,

5
Tyt - y=1"+ 5,
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1 L= 2h—Eo—Ey— I Conics through
—H3 — Hs — Ry — I3 Py, Q1,Q3,0.
—S3 — 2854 — 2S5 — Sg
2 Ly= 6h—2E9—FE, —2E,—F3 Sextics through
73[’?1 — 3[‘?3 — ﬁ4 — 4ﬁ5 - Hﬁ Qh QS (Inultiplicity 3)7
—Ri1 — 2Ry — 2R3 — Ry — 2R5 P (tacnode tangent to r),
—2R6 — 231 — SQ — 253 — 4S4 O (multiplicity 2),
—455 — 256 — S7 — 253 — 359 Py, P; (tangent to ly).

—3510 — 3511 — 3512

3 Ly = Ah —2Eo — Ey — E3
—2H, — Hy — Hy — H; — Hg
—2Ry — R3 — Ry — 2Rs
—385 — 354 — 255 — Sg
—S7 — 258 — 359 — 351()

Quartics through
0, @1 (multiplicity 2),
Py, P3,Q2, Q3 (multiplicity 1).

4 | L,= 3h—FEy1— Ey— Es — Hy — Hy Cubics through @1, @2, Q3
—Hs —2H, — 2Hs — 2Hg — R1 — Ry P, (tangent to 1),
—R3 — Ry — Rs — Rg — 251 — S P, (tangent to r3),
—S5 — 2S5, — 2S5 — S — S7 P (tangent to r3).
—2855 — 259 — S19 — S11 — 2512
5 Ls=h—-Ep Lines through O.
6 | Ly= 4h —2Ep — E1 — 2Ey — E3 Quartics through
71;1 — H4 — 2[‘?5 — 2]’?(, — Rl (), PQ (multlphClty 2)7
—2Ry — 2R3 — Ry — Rs — 2R Pl, Q], (Inultiplicity 1),
=281 — 52 — 353 — 651 — 455 — 25 P; (tangent to r3).

—87 — 285 — 259 — S10 — 2511 — Si2

Tabela 12 — Linear systems I’

where,

a(v) = 013 -160124+12001 —554010 4174209 —390308 +633707
—7435084+6171v° 347004 4+12290v3 —246v% 42501,

B(v) = 02227021 351020 —2915019 417310018 77975017 +275920016 — 783765015+ 1811095014
—3429800v13 45338045012 —6819500v! 1 +711514001° —6008210v° 4405124008 —2141208v7

+8657110%—259643v° 45566501 —8165v3+771v2 —420+1.

Demonstragao. By Proposition 3.3.16, we need to calculate the restriction of 75 : R —
P! to each D;, in A;, which we write as f;,: D;, — P*. To do this, we determine, for
each C;, C P? induced by D;, in I';, a map p;,: P — P? such that p;,(P') = C;,,.

We can write these maps as follows.

[u? — vugug : u? — vus : ujuy — vud,

Pro([urius])

Pso([urtug]) = [ur — vug 1 up — vy Uy — vuy.
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By the construction of R as a pencil of cubics, the elliptic fibration 73 is equivalent
in an open set of R to blowing down to P? and composing with the rational map
o([z:y:2]) = [ryz : (2—y)(y—=2)(2—2)]. Composing each p;, with ¢, we obtain maps

PO Piv: P! Cip ——» P!, which we write as

@ 0 psp([urug]) = [(ug — vu2)2(u% — vu%)u1u2 cv(ug — u2)3(u1 — VU ) U Us),

@ 0 pro([ursus]) = [(v — 1) (up — vug)usug : v(uy — ug)?).

The maps fi1, and f5, are the resolutions of indeterminacy of the maps above. The
coordinates in ¢ o p5, have no common factors, so f5, = ¢ o ps,. On the other hand,

the coordinates of ¢ o p;, have a common factor of (u; — vus)ujug, so we have
fro(urug]) = [(ur — W2)(U% - W%) tu(ur — U2)3]-

The equations for the fibrations are given by f; ,([u1:uz]) = 7p1([s:t]) in P* x P! over

k(v), thus we have

T sPu(ug — ug)? =t (uy — vug) (U — vuj),

5. SS’U(Ul — U2)3 = (U — 1)t3(u1 — UU2>U1U2.

Notice that the both equations admit a k(v)-point, namely ([v:1],[0:1]) for m; and
([1:0], [0:1]) for m5. Thus, we can transform both equations to Weierstrass form,

obtaining the result. O

Proposition 3.5.6. The elliptic fibrations w9, w3 and we are given by the following

equations in Weierstrass form:

2 341,.2
T Y +2xy:x3—%x + z,

T3 y2 =23 1322 — t3x,

T6: y2 - t3:L‘y + t6y = 2% — 322,
Demonstragcao. By Proposition 3.3.17, for each 7;, we need to find F;, and F;; the
fibers above the ramification points of the base change, and then calculate the curves
Ciq and C; they induce in I';. Notice that the ADE-types of each fibration determines
the Kodaira types of the ramified fibers, as noted in Remark 3.3.18. We can take
F; . to be the divisor L; (see Table 10). Then, F;; must be disjointed from F;, and

the same Kodaira type of the ramified fiber. For each m;, we can choose as follows:
Fop =015+ %5 + %,

F3p =05+ +2(3;20;) + O13 + 34,
Fop =0+ 3126 0; + Is.
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Here, Y/ is a section of 7x intersecting Fy* in the component ©5 and FX
in the same point as Y5. Next, we calculate 7.(n*F,) and 7.(n*F;;) in Pic(R).
The components coming from curves in P? will determine Cio and C; . For example,
F.(n*Fy4) = Ly = lo+27 +03+ (4B, +6 Hy+9R, +5R6+9S) +6S5 4655 +6511 +9515).

Then, the induced curve F3 is given by ly - r? - (2 = z(y — 2)?z = 0.

This process is straightforward for every F;,, as well as for Fs; and Fy;. For
Fy, we first have to calculate 7,.(n*(X')). Since ¥’ passes through the same fixed
point of & as s, it follows that 7*(¥') = X/ + Y95, and 32 = —3. As G preserves 3,
we calculate 7, (n* (X)) = 3H' + 5, where H' = 7(X/) corresponds with the section of
R coming from the line = + z = y in P? passing through Q; and Q,, and H? = —1.
Consequently, we have 7.(n*Fy,) = Oy + 3Hy + 27y + 3H'.

We arrive at the following equations for my, 73 and 7g :

my: 22— y)(y — 2) + Py(z —2)*(x —y + 2)° =0,
w3 ay(r —y)? + 322 (2 — x)(y — 2) = 0,
w6 xz(y — 2)° + Py (z — 2)(z — y) = 0.

All three equations admit a k(t)-point, namely [0:0:1] for 7o, [1:0:0] for 75 and [0:0:1]

for mg. Transforming the equations to Weierstrass form, we obtain the result. O]

Remark 3.5.7. The action of o can be given explicitly in the Weierstrass equations
in the previous propositions. For the equations in Proposition 3.5.6, ¢ is given by

(z,y,t) — (z,y,(st), and for those in Proposition 3.5.5, ¢ is (x,y,v) — ({32, y,v).

3.6 Classification of fibrations with respect to a non-symplectic

automorphism

In this section, we adapt results from Section 3.3 to K3 surfaces X with a
non-symplectic automorphism o of order p > 3. Recall that by Theorem 1.3.8, p is

at most equal to 19. We work under the following further assumption.

Assumption 3.6.1. We assume that the automorphism o acts trivially on NS(X).

Under this assumption, by Remark 3.2.11, X does not admit any elliptic
fibrations of type 3 with respect to o. Furthermore, by Proposition 3.3.1, (X, o) also
does not admit fibrations of type 1. Consequently, in this section we deal exclusively

with elliptic fibrations of type 2.
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3.6.1 Base changes of rational elliptic surfaces

In this section, we perform base changes of rational elliptic surfaces to cons-
truct pairs (X, o), where X is a K3 surface and ¢ a non-symplectic automorphism of
prime order p > 3. Let m: R — P! be a rational elliptic surface and 7y : X — P! the
elliptic fibration obtained after the base change by a Galois covering 7p: : Pt — P! of
degree p. Take v, v’ € P! such that 7p1(v') = v. We denote their ramification index

by r(v'|v) and their fibers by F, = 771(v) and FX = 75 (/).

We want to know when X is a K3 surface. Since by construction X has
an elliptic fibration with basis P!, by Proposition 1.3.14 this is true if and only if
e(X) = 24. We use the following definition.

Definition 3.6.2. We define the function C(v'|v) as follows.
C(V'|v) :==r(v'|v) - e(F,) — e(F).
By the Riemann-Hurwitz Theorem, 7p1 is ramified in 2 distinct points a, b € P*.
Take @,V such that 7p1(a’) = a and 71 (b") = b.
Lemma 3.6.3. The Euler number of X is given by
e(X) =12p — C(d|a) — C(V'|D).
Demonstracao. By Proposition 1.1.13, we can write

()= Y eF) =Y X eFd), (1)

vePl vEP! 7p1 (V) =v
By Definition 3.6.2,
e(F) =r(|v) - e(F,) — C(v'|v). (3.2)

Substituting Equation 3.2 into Equation 3.1, we obtain

e(X) = > e(F) ( > T(v'\v)) -2 > CWh) (3.3)
velP! Tp1 (V) =v vEP! 751 (V) =v

Since 7p1 is a covering of degree p, we know - (- r(v'|v) = p. Applying Proposi-

tions 1.1.13 and 1.2.3, we know that ", cp1 e(F,) = 12. Furthermore, for v' # o, ¥/,

we have 7(v'|v) = 1 and by Proposition 1.1.23 ¢(FX) = e(F,). Thus, C(v'|v) = 0,

and we obtain the result by substituting in Equation 3.3. O

In the following proposition, we present a formula for C(v'|v) in terms of the

Kodaira type of F, and the ramification index r(v'|v).
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F, | C(V|v) || F, C(v'|v)
m
I I* 12| —
SR E: 5
SETIE
ol e e (| Sl
L 6 | L 6 ] 6
m i} m [m — 4|2 ]]
v |2 v |12 m| _ [m=3l5]]
m m— |2 (228
L 3] L 3] 3

Tabela 13 — Values of C(v'|v)

Proposition 3.6.4. Let r(v'|v) = m. The value of C(V'|v) is determined by the
formulas in Table 13.

Demonstragio. Notice that the Kodaira type of F¥ is known by 1.1.23, so we just
need to check if me(F,) — C(v'|v) = e(FX) for each possible Kodaira type of F,. We

present the proof for F, of type IV or IV*; the other cases are analogous.
Write m = BV;)LJ +r, with r =0, 1 or 2. If F,, is of type IV, then e(F,) = 4,
and we have
me(F,) — C(v/|v) = 4(3 V;J ) —12 m
m m
=12|—| +4r — 12| —
{ 3 J o { 3 J
0 ifm=0 mod3

=4r=4¢4 ifm=1 mod3
8 ifm=2 mod 3.

By Proposition 1.1.23, FX is of type In if m =0 mod 3, IV if m =1 mod 3
and IV* if m =2 mod 3. Thus, the result is compatible with the values of e(FY).

Write r = m — BV?ZLJ We have

{m_ggygw:m: 0 ifm=0 mod3

1 otherwise.

If F, is of type IV*, then e(F,) = 8, and we write
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&n—m<m— mJ—r”_%3w>_

3 3

m 7]
22 212 2| = am =

_3J * {3 "

m 7] m
1212 12| —ai3| 2 —

_3J*' {3 @{3J+T)

0 ifm=0 mod3

125—%r: 12-4=8 ifm=1 mod3

12—-8=4 ifm=2 mod 3.
This result is also compatible with the expected values for e(F),). O

Proposition 3.6.5. Let m: R — P! be a rational elliptic surface and pr: P! — P!
a Galois cover of prime degree p ramified at a,b € P'. Let mx: X — P! be the base
change of m: R — P! by 7p1. Then, X is a K3 surface if and only if the fibers F,
and Fj have the Kodaira types described in Table 14, up to a permutation.

p Fa Fb

o | LI IV* | I, 11
] L | IV
71 I |,
| Ive [ ILIIT
] r I
11 1r- I,
onr | 7
A7 BV
13 117 17

17 V= 117

19 11rr 17

Tabela 14 — Ramified fibers when X is a K3 surface

Demonstragio. By Proposition 1.3.14, X is K3 if and only if e(X) = 24, and by
Lemma 3.6.3, e(X) = 12p — C(d’|a) — C(V|b). Thus, X is a K3 surface if and only if
C(d'la) +C(b'|b) = 12(p — 2). We can calculate C(a’|a) + C(V'|b) using Proposition
3.6.4. We note that if p = 13 and F, and F;, both of type IV*, then C(a'|a)+C(V'|b) =
132 =12 - 11, but this is not possible in rational elliptic surfaces by Corollary 1.2.4.
This brings us to the result. O]
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Remark 3.6.6. Let X be a K3 surface and 7x: X — P! be the base change of
a rational elliptic surface by a Galois map 7p1: P! — P! of prime degree p. The
map 7p1 induces an automorphism o, € Aut(P'), which can in turn be lifted to an
automorphism o € Aut(X). The quotient of X by o is a rational surface, so by
Theorem 1.3.12; ¢ is non-symplectic. By construction, wx is an elliptic fibration of
type 2 on (X, o). Notice that in general (X, o) does not satisfy Assumption 3.6.1, i.e.
o may act non-trivially on NS(X'). This always happens when 7mx has an irreducible
fiber distinct from the ramified fibers F, FiX.

3.6.2 Elliptic fibrations on (X, o)

Let X be a K3 surface and ¢ € Aut(X) a non-symplectic automorphism of
order p > 3 under Assumption 3.6.1. In what follows, we use Proposition 3.6.5 to
describe the configuration of fibers of an elliptic fibration 7: X — PL. Recall that 7
is of type 2 with respect to o.

By Theorem 1.3.12, the quotient X /o is rational, but, as in the case of p = 3,
in general it is not smooth. By Proposition 1.3.10, the local action of ¢ around =z
can be linearized as A,;, and a fixed point z € X is isolated if and only if ¢ > 0.
In this case, the point 7(z) € X/o is a singularity of type %(1, b) for some b such

that 0 < b < p (see (REID, 2003)). Let ¢: R — X/o be the resolution of all the

singularities of X/o.

Proposition 3.6.7. Let m: X — P! be an elliptic fibration of type 2 on (X, o).

Then, T induces an elliptic fibration mg: R — P

Demonstracio. Let o, be the automorphism of P! induced by o and 7. Choose
v; € P! such that vy is not fixed by o, and its respective fiber F,, is smooth.
Then, the orbit of F,, by o consists of p distinct smooth fibers denoted by F,, for
i=1,...,p, where v; = ¢:"}(v1). In particular, none of the fibers F,, contain an

isolated fixed point of o.

Let D = 7(F,,) C X/o. Then, o defines a unramified cover of degree p of D
given by p disjointed smooth curves of genus 1. Thus D is a smooth curve and by
the Riemann-Hurwitz Theorem it also has genus 1. Furthermore, D? = 7,(F,,)- D =
F, -m™(D)=F, - (F, +...+F,) =0. Finally, let D = ¢~(D) C R. Notice that
D does not contain the singularities resolved by ¢, since the isolated fixed points of
o are not in F,,. Thus, D is also a smooth genus 1 curve with D? = 0, and the linear

system |D| induces a fibration of genus 1 curves 75: R — P,
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It remains to see that 7z admits a section. Let X be the zero-section of 7.
Then, let C = 7(3) and C be the strict transform of C' by ¢. We can calculate
D-C=r/(F,) -C=F,  -C)=F, -%y=1.Since DN C is not in the center of
the resolution ¢, D - C' = 1. Therefore, Th: R — P! is an elliptic fibration with D as

its fiber class and C as its zero-section. OJ

Assume 75: R — P! is not relatively minimal. Then, there is a birational
morphism 7z: R — R such that R is a smooth rational surface endowed with a

relatively minimal elliptic fibration 7z: R — P! such that 75 = ng o 7g.

Proposition 3.6.8. Let m: X — P! be an elliptic fibration of type 2 on (X, o).
Then, there is a map T,: P — P! such that 7 is the base change of mr: R — P! by

T, and o is the induced automorphism.

Demonstracio. Let o, be the automorphism of P! induced by ¢ and 7 and 7, : P* —
P! the quotient of P! by the action of o.

Let o', be the ramification points of 7., and 7,(a’) = a,7,(b') = b. Let
U=7rYP'\{d,V}) C X,V = W}TEI(IP’l \ {a,b}) and V = 3" (P*\ {a,b}). Since
the isolated fixed points of o lie on the fibers FX, Fif of m, the exceptional curves
of ¢: R — X/o lic on F2 and FE. Thus, we have an isomorphism 7(U) = V. For
(') = v and v/ # |, the fibers F¥X and FF are isomorphic. Since X is a K3
surface, 7 is relatively minimal, any (—1)-components of fibers of 73 lie on F, f, FbR.

Thus V & V.

Thus, taking fiber product of mz: R — P! by 7,.: P! — P! we obtain a
fibration which agrees with 7 over an open set. After resolving singularities and
contracting (—1)-curves, we obtain a minimal K3 surface which is birational to X.

Since X is minimal, they are isomorphic. n

Remark 3.6.9. Recall that in the case of order 3, Propositions 3.3.9 and 3.3.10
have the hypothesis that o preserves the zero-section of 7. Since for order p > 3 we

are working under Assumption 3.6.1, this is automatically true for (X, o).

We can use Proposition 3.6.5 to prove the following.

Proposition 3.6.10. Let m: X — P! be an elliptic fibration of type 2 on (X, 0).
Then, o fixes two fibers F, and Fy, and permutes the remaining fibers. The Kodaira
types of Fy and Fy are described in Table 15 up to a permutation, and the other
fibers are all irreducible (i.e. of Kodaira type Iy, Iy or I1).
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p | FF Fy
5| T IV | Iy, IT°

I v
1| 1 it
oIr Ir |
v I+ |
13| IIT 1
17| 1V 11T
19| 111 1

Tabela 15 — Types of fixed fibers in fibrations of type 2

Demonstra¢io. By Proposition 3.6.8, 7: X — P! is a base change of a rational
elliptic surface 7p: R — P! by a map 7: P* — P! of degree p. By Proposition 3.6.5,
we know the Kodaira types of fibers of 7. Thus, we can use Proposition 1.1.23 to

determine the fibers of . O]

Let mx: X — P! be an elliptic fibration on (X, o), and 75: R — P! be
elliptic fibration it induces on resolution of the quotient X/o. Any elliptic fibration
7: X — P! (possibly distinct from 7y) induces a pencil of curves A on R. We can
determine A by pushing forward the linear system | F'| of the fibers of 7 by the quotient
7: X — X/o, and then applying the pullback by the resolution ¢: R — X/o.

Proposition 3.6.11. The linear system A induced by w: X — P! is a splitting genus
1 pencil of R.

Demonstragdo. Suppose 7 is of type 2. By Proposition 3.6.7, we know that 7 induces
an elliptic fibration 75. Thus, A consists of the system {E,},cp1, where F, = Wél(v).
Consequently, we have F,UQ = 0 and for all but finitely many v € P!, g(ﬁ’y) =1. By

the adjunction formula, F, - K5 = 0. Therefore, A is a splitting genus 1 pencil. [

Let ng: R — R be the contraction of the (—1)-components on fibers of
Th: R — P'. Then, R is a smooth rational surface with a relatively minimal elliptic
fibration 7r: R — P!, and by (MIRANDA, 1989, Lemma IV.1.2), there is a birational
map n: R — P2

As a consequence, for any fibration 7: X — P! distinct from 7y, the pencil
A induces another pencil I' on P? after pushing forward by nz and 7. Since by

Proposition 3.6.11 A is a genus 1 pencil, the same is true for I'. We use I' to deduce
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an equation for the generic fiber of 7. Recall that by Proposition 3.6.8, 7 is the base

change of a rational elliptic surface by a Galois covering 7 : P! — P! of degree p.

Proposition 3.6.12. Let F,, F}, be the fibers above the ramification points of Ty,
and Cq, Cy the induced curves in I'. Then, we can write the generic fiber of m by the

following equation
7 Co(z,y, 2) + tPCy(z,y, 2) = 0.

Demonstracio. The linear system I' is a pencil of genus 1 curves in P? generated by C,
and Cp. Let 1 R — P! be the elliptic fibration on R induced by A. Then, for all but
finitely many ¢ € P!, the fiber F; = (7/)~1(¢) is isomorphic to Co(z, y, 2)+tCp(z, y, 2) =
0. By a change of coordinates, we can suppose that 7, is given by the map t > t?.
Thus, applying the base change by 7,, we obtain the equation for the generic fiber of
. O
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Conclusao

In the last part of this thesis, we present further questions and topics of

future research that follow from the content of the two main chapters.

Chapter 2. There are different ways of generalizing Nagao’s conjecture
to the ranks of Jacobian varieties of hyperelliptic curves over k(T (see (WONG,
2001), (HINDRY; PACHECO, 2005), (HAMMONDS et al., 2019)). Specifically, in
(HAMMONDS et al., 2019) these formulas were used to determine the ranks for

specific families of hyperelliptic curves.

Let x be a hyperelliptic curve over k(T) given by y?> = f(x,T), where
deg,(f) < 2 and deg,(f) > 5. The Kodaira—Néron model of x is a smooth projective
surface X endowed with a conic bundle ¢: X — P! and a fibration 7: X — P! in
curves of genus g > 1. Is there a way to use these geometric structures to reinterpret
and generalize the results of (HAMMONDS et al., 2019)7

Chapter 3. Let X be a K3 surface and o € Aut(X) a non-symplectic
automorphism. In Chapter 3, we add several conditions to the pair (X, o) to apply

our method. The natural next step is to figure out which conditions can be relaxed.

1. Propositions 3.3.9, 3.3.10 and 3.3.12 require the hypothesis that o preserves
the zero-section of w: X — P! If this is not true, then 7 determines a genus 1
fibration on the rational surface R (i.e. an elliptic fibration without section).
Rational genus 1 fibrations are constructed as the resolution of a Halphen pencil
on P? ((COSSEC; DOLGACHEYV, 1989, Theorem 5.6.1)). Can this construction

be used to obtain equations for the generic fibers of elliptic fibrations on X7

2. The results of Sections 3.3.3 and 3.3.4 rely on Assumption 3.3.14 that X
admits an elliptic fibration of type 2. By Proposition 3.2.13 this is not true
for pairs (X, o) where o fixes a curve of genus g > 2. For K3 surfaces with
a non-symplectic involution ¢, these cases were studied in (GARBAGNATT;
SALGADO, 2020) when ¢ also fixes a rational curve, and in (COMPARIN et
al., 2023) when ¢ only fixes one curve of genus g > 2. What can be said for
order 37
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